
www.manaraa.com

University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Theses and Dissertations 

Spring 2020 

A Machine Learning Based Approach to Accelerate Catalyst A Machine Learning Based Approach to Accelerate Catalyst 

Discovery Discovery 

Asif Jamil Chowdhury 

Follow this and additional works at: https://scholarcommons.sc.edu/etd 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Chowdhury, A. J.(2020). A Machine Learning Based Approach to Accelerate Catalyst Discovery. (Doctoral 
dissertation). Retrieved from https://scholarcommons.sc.edu/etd/5918 

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in 
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please 
contact dillarda@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F5918&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fetd%2F5918&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.sc.edu%2Fetd%2F5918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/5918?utm_source=scholarcommons.sc.edu%2Fetd%2F5918&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dillarda@mailbox.sc.edu


www.manaraa.com

A Machine Learning based Approach to Accelerate Catalyst
Discovery

by

Asif Jamil Chowdhury

Bachelor of Science
Bangladesh University of Engineering and Technology, 2007

Submitted in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy in

Computer Science and Engineering

College of Engineering and Computing

University of South Carolina

2020

Accepted by:

Gabriel A. Terejanu, Major Professor

John R. Rose, Committee Member

Marco Valtorta, Committee Member

Jianjun Hu, Committee Member

Andreas Heyden, Committee Member

Cheryl L. Addy, Vice Provost and Dean of the Graduate School



www.manaraa.com

c© Copyright by Asif Jamil Chowdhury, 2020
All Rights Reserved.

ii



www.manaraa.com

Abstract

Computational catalysis, in contrast to experimental catalysis, uses approximations

such as density functional theory (DFT) to compute properties of reaction intermedi-

ates. But DFT calculations for a large number of surface species on variety of active

site models are resource intensive. In this work, we are building a machine learning

based predictive framework for adsorption energies of intermediate species, which can

reduce the computational overhead significantly. Our work includes the study and

development of appropriate machine learning models and effective fingerprints or de-

scriptors to predict energies accurately for different scenarios. Furthermore, Bayesian

inverse problem, that integrates experimental catalysis with its computational coun-

terpart, uses Markov chain Monte Carlo (MCMC) methods to refine the uncertainties

on the quantities-of-interest such as turnover frequency. However, large number of

forward simulations required by MCMC can become a bottleneck, especially in com-

putational catalysis, where the evaluation of likelihood functions involves finding the

solution to microkinetic models. A novel and faster MCMC method is proposed to re-

duce the number of expensive target evaluations and to shorten the burn-in period by

emulating the target along with using a better informed proposal distribution.
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Chapter 1

Introduction

Machine learning (ML) is a subfield of computer science that has intersecting areas

with fields such as statistics, data mining, artificial intelligence, and it has proved to

be an immensely useful tool for business, health, science and engineering. Machine

learning operates by trying to find patterns in the data and can be used to make

predictions that can save cost, time and effort. With the availability of more data

in recent years, ML has been successfully applied to accelerate drug discovery [1],

find patterns in genetic data [2], make accurate predictions for experimental design

in molecular and materials science[3], detect objects in images and videos [4], un-

derstand natural language to classify documents [5]. My work focuses on using and

extending machine learning models to develop predictive models for faster computa-

tional catalyst discovery.

Effective catalysts can speed up a chemical reaction by providing a lower energy

pathway between the reactants and the products. Based on the phase of the catalyst

compared to the reactants, catalysis can be divided into two areas: heterogeneous

and homogeneous. Heterogeneous catalysts operate in a different phase from that of

the reactants, i.e, the catalyst is a solid material whereas the reactants are in liquid or

gas phase [6]. An important reason for the extensive use of heterogeneous catalysts

in industry is that they are easily separable from the reactant and the products.

These catalysts are typically porous materials so that the chemical reactions have

more surface area on which to take place. The discovery of an effective heterogeneous

catalyst is a complex process, and if done experimentally in a trial and error fashion,
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can be very time consuming. That is where lies the importance of computational

catalysis.

Computational catalyst screening has the potential to significantly accelerate het-

erogeneous catalyst discovery. Typically this involves developing microkinetic reactor

models (set of elementary reactions which are thought to be of relevance for a com-

plete chemical transformation) that are based on parameters (such as rate constants)

obtained from density functional theory (DFT) and transition state theory (TST).

As analytical solution to many body Schrødinger equation is intractable, approxi-

mate methods like DFT has to be used instead. Still, there is a large computational

overhead associated with the DFT calculations of different adsorption and transition

state energies on various active site models. The uncertainty captured by composite

probabilistic model for DFT energies is propagated through the microkinetic model to

quantities-of-interest (QoI) such as turnover frequency (a measure of catalytic activ-

ity) or apparent activation energy using Monte Carlo simulations. This is the forward

problem of the Bayesian inference. The inverse problem happens when we are given

experimental measurements on QoIs such as TOF, and want to refine or reduce the

uncertainties associated with the energy calculations. This step typically makes use of

the Markov chain Monte Carlo (MCMC) algorithms. The MCMC methods, however,

are difficult to use if the likelihood function is computationally expensive to evaluate.

My work is centered on making these parts of the catalyst discovery workflow, i.e,

the calculation of adsorption energies and the use of MCMC methods, more efficient.

In figure 1.1, the high level workflow for catalyst discovery is shown. The top and

bottom flowcharts show the workflows with and without the use of machine learning,

respectively. The key differences between the workflows lie in two areas: first, instead

of calculating and using a full database of all the reaction intermediates, machine

learning is applied to predict significant portion of the energies so that only a partial

database suffices; second, although both the workflows use MCMC to solve Bayesian

2
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Figure 1.1: Workflow of the heterogeneous catalyst discovery with and without our
proposed improvements. The top flowchart shows the plain workflow without appli-
cation of ML with our target areas highlighted. The bottom one shows the workflow
with the application of ML. Here, the areas our current work focuses on are high-
lighted - instead of using full database of adsorption energies, ML is used to predict
large number of them; and Bayesian inverse problem is solved with a new, accelerated
MCMC method.

inverse problem (refinement of uncertainties using experimental measurements), our

approach uses an improved and accelerated version of plain Metropolis-Hastings al-

gorithm to reduce the number of expensive forward simulations. The areas where the

current work investigates and improves upon are highlighted in the bottom workflow

(works for prediction of adsorption energies using ML are discussed in chapters 2 and

3, whereas the improvement in the inverse problem is discussed in chapter 4) .

In order to reduce the computational cost for calculation of adsorption and transi-

tion state energies of all possible surface states on a large number of catalyst models,

previous works have developed linear scaling relations for surface intermediates and

transition states that only depend on a few, typically one or two metal descriptors

such as the carbon atom adsorption energy. As a result, only the descriptor values

3
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have to be computed for various active site models to generate volcano curves for

activity or selectivity. Unfortunately, for more complex chemistries the predictability

of linear scaling relations is unknown. Also, the selection of descriptors is essentially

a trial and error process. In our work, we have tested the effectiveness of non-linear

machine learning models compared to the linear scaling relations when predicting

the adsorption energy for various species on a metal surface based on data from the

rest of the metal surfaces. Our results showed that linear scaling perform as good

as the advanced ML models when the training dataset contains a complete set of

energies for all the species on various metal surfaces. However, when the training

dataset is incomplete, namely contains a random subset of species energies for each

metal, molecular representations of the species have to be used as the descriptors

along with the metal descriptors; and non-linear ML models significantly outperform

linear models. To improve upon the trial and error process for the discovery of ap-

propriate metal descriptors, we proposed an approach for automatic discovery based

on principal component analysis (PCA). This part of the work has been published in

a peer-reviewed journal [7] and the complete discussion is presented in chapter 2.

The work of chapter 2 was extended to a different scenario which warranted novel

methods to achieve satisfactory results. This work is presented in chapter 3. For com-

plex surface chemistries, the number of reaction intermediates can be very large and

the cost of calculating the adsorption energies by DFT for all surface intermediates

even for one active site model can become prohibitive. In our next work, we identified

appropriate descriptors and machine learning models that can be used to predict a

significant part of these adsorption energies given data on the rest of them. Moreover,

our investigations also included the case when the species data used to train the pre-

dictive model is of different size relative to the species the model tries to predict - this

is an extrapolation in the data space which is typically difficult with regular machine

learning models. Due to the relative size of the available datasets, we attempted to

4
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extrapolate from the larger species to the smaller ones in our work. A neural network

based predictive model was developed that combines an established additive atomic

contribution based model with the concepts of a convolutional neural network that,

when extrapolating, achieves a statistically significant improvement over the previous

models. This work has also been published in a peer-reviewed journal [8].

Next, we move to the second part of the proposed improvement on the cata-

lyst discovery workflow. To reduce uncertainties associated with the computational

catalysis, we update them with the measurements from experimental catalysis. We

propose an enhanced Metropolis-Hastings (MH) algorithm which we call MHGP, that

requires less number of expensive posterior function evaluation, has shorter burn-in

period, and uses a better and informed proposal distribution. The main innovations

include the use of Bayesian optimization to reach the high density region quickly,

emulating the target distribution using Gaussian processes (GP), and using Laplace

approximation of the GP to build a proposal distribution that captures the underlying

correlation better. An initial version of the work has been presented in a conference

and the full version is in preparation to be submitted to a peer-reviewed journal.

MHGP is discussed in chapter 4.

5
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Chapter 2

Prediction of Adsorption Energies using

Machine Learning

2.1 Introduction

Heterogeneous catalyst discovery using computational catalyst screening typically in-

volves the development of a microkinetic reaction model that is based on DFT and

TST [6]. To reduce the large computational cost of computing different adsorption

and transition state energies on various active site models, linear scaling relations for

surface intermediates and transition states have been developed [9, 10]. Linear scal-

ing relations typically use a few easily computable descriptors which are computed

for a variety of active site models. Then a volcano curve in activity or selectivity

is generated as a function of the descriptors. However, the effectiveness of linear

scaling relations is unknown for more complex chemistries. Besides, the descriptor

selection process typically involves trial and error. In this paper, working on a pre-

dictive framework for the most stable ground state adsorption energies (without zero

point correction) across a group of intermediate species and metal surfaces for the

decarboxylation and decarbonylation of propionic acid [11], we propose an automatic

process to discover efficient metal descriptors. We also compared the effectiveness

of linear scaling with that of advanced machine learning (ML) models in predicting

adsorption energies of surface intermediates in various scenarios. Specifically, when

working with a set of metal surfaces (here the closed-packed surfaces of Ni, Pt, Pd,

Ru, Rh, Re, Cu, Ag) and the adsorption energies for a set of intermediate species

6
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on those surfaces, we can think of a metal-species table where each row of the table

contains adsorption energies of various species on a metal surface while each column

contains adsorption energies of a species on different metal surfaces. Each cell in

this table requires an expensive DFT calculation to obtain the value of the cell -

the adsorption energy for an intermediate species for a particular metal. Our goal

is to minimize the number of these calculations by predicting part of the table given

training data on the other part. In this paper, we discuss two approaches for dividing

the table into training set and prediction set.

One approach is to predict across metals - given energies for all intermediate

species for some of the metal surfaces, we predict energies for all the species for the

remaining metals. In other words, our training set is comprised of all the columns

for some of the rows in the metal-species table, and the prediction set contains the

rest of the rows. This is the approach that is commonly used in the catalysis com-

munity where linear scaling relations are used to predict adsorption energies [12] for

species on a new metal surface. The typical choice of descriptors in this case is some

combination of the adsorption energies of carbon, oxygen etc. In this paper, we use a

more systematic approach that facilitates automatic descriptor discovery. Principal

component analysis (PCA) [13] with varimax rotation [14] is used to find the best

minimal set of adsorption energies that can be used as metal descriptors for a given

data set. Our results show that the combination of descriptors obtained by this ap-

proach outperforms conventional descriptors like the adsorption energies of atomic

carbon, hydrogen and oxygen. Also, the prediction results obtained by linear scaling

with the discovered descriptors were compared with the predictions from non-linear

machine learning models such as kernel based models and neural networks [15]. We

found none of these advanced ML models to perform better than linear scaling when

predicting across the metals.
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The second approach is to choose surface-species pairs randomly for training and

then predict on the rest. In terms of the metal-species table, the training set in this

case consists of random cells from the entire table and the prediction set contains

the rest of the cells. Thus, each row and each column of this table is only partially

filled by the training data and the predictive model should fill in the missing ones.

As this is a prediction not only across the metal surfaces but also across the species,

we need additional species descriptors along with the metal descriptors from the first

approach. Although this is not the conventional approach to catalyst discovery, we

study it in this paper because first, for large number of intermediate species this

approach can require fewer training points and second, this allows us to work with

a general predictive framework for adsorption energies with a complete set of metal

descriptors as well as the species descriptors. Finding appropriate species descriptors

for predicting different chemical properties [16] is an active research area. Species de-

scriptors have been used with ML models to predict atomization energies and other

chemical properties as substitute for expensive DFT calculations [17, 18, 19, 20]. The

descriptors that have been proposed range from a simple bond count or bond order

to more complex Coulomb matrix or bag-of-bonds techniques [19, 20]. In the current

work, we have studied different species descriptors along with the metal descriptors

for predicting adsorption energies of random metal-species data points. Simple de-

scriptors are desirable both because they do not require the geometry and coordinates

of the species and surface atoms and also because they are less prone to overfitting.

Our results show that a very simple descriptor like bond counts, when combined with

the metal descriptors discovered in the first approach, has no statistically significant

difference in prediction accuracy compared to more sophisticated descriptors.

Finally, the choice and calibration of the machine learning models is also studied.

Unlike in the first approach, linear models proved inferior in predicting across metal

and species compared to complex ML models. The highly time consuming process of

8



www.manaraa.com

DFT calculations of the intermediate species across the metal surfaces means that in

this problem domain, the size of the data set will not always be large and hence the

machine learning algorithm has to approximate the underlying function with a rela-

tively small training set - a challenge we expect to be common to many catalysis and

materials science problems. Previous research on predicting the chemical properties

had successfully used kernel ridge regression [18] and artificial neural networks [15]. In

our predictive analysis of the adsorption energies we found that kernel based methods

such as support vector regression, Gaussian process [21] and kernel ridge regression

all worked well with prediction Mean-absolute-error (MAE) around 0.13 eV once their

hyper-parameters were properly tuned. An additional benefit of the Gaussian pro-

cess is that we can obtain the uncertainties around the predictions which is useful

for uncertainty quantification in later stages of the calculation of the macroscopic

quantities of interest (QoIs) such as catalyst’s turnover frequency [22, 23]. Linear

methods with regularizers had an MAE of around 0.28 eV, significantly higher than

kernel based methods. Neural network with extensive hyper-parameter tuning had

MAE a little over 0.2 eV, which is clearly an improvement over the linear models but

not as good as the kernel based methods. With small data sets as in this case, neural

nets can be prone to overfitting.

2.2 Methodology

We ran our predictive analysis on a data set comprising of the adsorption energies

of a group of species of relevance for the decarboxylation and decarbonylation of

propionic acid on eight different metal surfaces. In this section, details of the methods

and algorithms are presented. We begin with a description of the data preparation.

Then, we discuss prediction across metals - training the predictive model on all species

energy for some of the surfaces and then predict for the rest of the surfaces. Here,

we compare linear scaling with advanced ML models and also present the automatic
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discovery process for metal descriptors. Finally, we elaborate on prediction across

species and metals - training on random points in the metal-species data space and

predicting the rest of them. Again, a comparison among linear scaling and different

types of ML models for this approach are presented. Here, we also discuss the feature

engineering process of coming up with effective species descriptors.

2.2.1 Data Collection and Data Preparation

Adsorption energies are highly dependent on the metal surface structure [6]. In the

current work, we have confined our predictive analysis on similar, i.e., closed-packed

metal surface structures: Pd(111), Pt(111), Ni(111), Rh(111), Ag(111), Cu(111),

Re(0001), and Ru(0001). Data were obtained from VASP calculations with PW91

functional for these metal surfaces and for each intermediate species in the microki-

netic model of the decarboxylation and decarbonylation of propionic acid identified

in our prior work [11, 24, 25] and illustrated in Figure 2.1. The adsorption energies

as well as the geometry used in VASP calculations are considered in our predictive

analysis. The geometric data was converted to a Coulomb matrix [19] and bag-of-

bonds [20] to be used as features for the ML algorithms.

The energy data are prepared to have the same reference values. For example,

the adsorption energy for an intermediate surface species CxHyOz was calculated as:

ECxHyOz = EDFT
CxHyOz − E

DFT
∗ − xEC − yEH − zEO (2.1)

where

EC = EDFT
CH4(g) − 2EDFT

H2(g)

EH = 1
2E

DFT
H2(g)

EO = EDFT
H2O(g) − EDFT

H2(g)

Here, EDFT
∗ is the energy of the free site (clean slab) and EDFT

X denotes the adsorption

energy of the species X from the DFT calculations.
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Figure 2.1: Reaction network for the decarboxylation and decarbonylation of propi-
onic acid. The larger species among the metal descriptors (CHCHCO) is marked on
the figure. The other descriptor (OH), along with COOH, CO2, CO, H2O and H,
is not included in the figure for clarity.

2.2.2 Prediction Across Metals

Based on the d-band model [6] and past studies on the adsorption of small molecules

on transition metal surfaces, the adsorption energies of different intermediate species

are expected to show a linear scaling relationship against carefully chosen descrip-

tors [12]. For each intermediate species in our data set, adsorption energies for all

metal surfaces were plotted against various descriptors, i.e., the adsorption energies

of all surface species in the reaction mechanism and other commonly used descriptors

such as the carbon and oxygen adsorption energy. While the data show a trend, the

standard deviations of the actual values from the best linear fits with these single

descriptors were greater than 0.3 eV for many of the intermediate species as shown

in Figure 2.2.

Considering the adsorption energies of the 26 intermediate species as a feature

and then running Principal Component Analysis (PCA) [13] on the data reveals
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Figure 2.2: Two of the many cases where linear scaling with single descriptor does
not yield a satisfactory result. Left: adsorption energies (after referencing) of
CH3CH2COO against the C adsorption energy. Right: adsorption energies (after
referencing) of CH3CHCOO against the O adsorption energy.

that the first, second, and third principal components explain approximately 93%,

5%, 1% of the variance of the data, respectively. Hence, approximately 98% of the

variance is explained by two factors. PCA reduces the dimensionality of the data

but the descriptors are not directly identifiable from this because PCA learns a linear

combination of the original variables as its components. So, we applied varimax

rotation [14] which searches for a rotation of the factors from PCA and associates

each original variable with one or a small number of factors, and thus, helps to find

the most relevant original variables that best capture the variance in the data. With

this approach, we found that adsorption energies of two species - CHCHCO and OH

aligns best with the first two principal components or factors. The study also reveals

that when including C, H and O adsorption energies in the database, the adsorption

energy of carbon becomes a dominant factor. So, in our predictive analysis, when

using two metal descriptors, we used the adsorption energies of CHCHCO and OH,

and when using three metal descriptors we added the adsorption energy of carbon

as the third descriptor. We predicted adsorption energies for all the species with

seven of the eight metals for training and the other one for testing. Combinations

of one, two, three, and four intermediate species adsorption energies were tried as

descriptors. The results agree with our analysis with the best result of MAE 0.12 eV
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being obtained when using CHCHCO, OH and C as descriptors. Other good set of

descriptors based on low MAE during linear scaling were: (CHCHCO, OH, CO),

(CHCHCO, OH, O), (CHCHCO, OH, H), (CHCHCO, OH). The commonly

used descriptor set in catalysis (C, O adsorption energies) resulted in an MAE of 0.2

eV approximately.

As we will show below, prediction using advanced machine learning methods such

kernel based methods did not show a statistically significant improvement over linear

scaling when predicting across metals. This result confirms the hypothesis that the

adsorption energies show a linear scaling relationship. Our analysis shows that a

combination of properly chosen descriptors are required in this case. The methodical

approach of applying PCA and varimax rotation can help us identify the proper

descriptors efficiently.

Automatic discovery of chemical descriptors have been done in previous research.

One approach that has been proposed is a clustering-ranking-modeling method that

ranks all candidate descriptors for each cluster based on their performance by run-

ning regression [26]. Another approach was to use LASSO as a feature selection

technique [27]. This is a supervised learning way of finding appropriate features

requiring exploration of a large number of possible descriptors. Since in our case

the target variable and the feature variables are both adsorption energies of some

species, the dimensionality of the whole data table can be reduced in an unsuper-

vised manner with the application of PCA and then the varimax rotation provides the

interpretability that PCA lacks [28] (as each principal component usually is a linear

combination of a number of original variables) but LASSO is good at [29]. Moreover,

with our approach we are able to come up with an appropriate number of descriptors

automatically without the need to try out a large number of candidate descriptors.

Nevertheless, we also ran LASSO feature selection with different sets of descriptors
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and found that the largest non-zero valued descriptors identified by LASSO match

with the descriptors found by our approach.

2.2.3 Prediction Across Species and Metal

To build a predictive model which predicts not only across metals but also across

species as it might be necessary for a complex/large reaction network where it is

extremely time intensive to compute the energy of every possible surface species, we

need some descriptors or features that can work as representations of the species

molecules. These representations should include the interaction among the atoms of

the species molecule as well as the interaction between the molecule and the metal

surface. Combinations of these features are then fed to machine learning algorithms.

The algorithms that we used can be broadly divided into three subclasses: linear

models with L1 or L2 regularizers, kernel based methods, and artificial neural network.

Feature Engineering

Feature extraction for the representation of molecules and their interaction with the

surface was performed by using the geometric data from VASP calculations. These

descriptors need to be used in addition to the ones we were already using to predict

across metal surfaces as in this case one wants to use information from one species

for predicting the adsorption energy of another species. We computed the pairwise

distance between the atoms of the intermediate species and the surface to find the

number of C-C, C-H, C-O, O-H, C-M, and O-M bonds (single, double or triple bonds

were not differentiated). Whenever the sum of the covalent radius [30] of the atoms

involved in the bond was larger than the bond distance, we assigned a bond there.

We also used species-only bond counts, i.e., the number of C-C, C-H, C-O, and

O-H bonds. This has the advantage that no coordinate data is required and the

descriptor values can be filled up with only pen-and-paper chemistry. In general,
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coordinate-free descriptors are preferred as they do not require any DFT or semi-

empirical calculations once the model has been trained.

Then, we tried more sophisticated descriptors. The Coulomb matrix (CM) and

bag-of-bonds (BoB) techniques have been used in previous research [31] for repre-

senting molecules. We have used these as descriptors to differentiate among the

intermediate species structures. The diagonal entries in the Coulomb matrix are

given by

C(i, i) = 0.5 ∗ Z2.4
i (2.2)

where Z represents the atomic number. The off-diagonal (i,j)-th entry of the Coulomb

matrix is given by

C(i, j) = Zi ∗ Zj
r

(2.3)

where r represents the distance between the atoms in Angstrom. The sorted eigen-

values of the matrix are then used as the descriptor. The bag-of-bond method works

with only the off-diagonal elements of the Coulomb matrix by placing the entries for

each pair of atoms inside a bag and thus building a long vector [20]. The dimen-

sionality of the descriptor vector increases with the number of atoms. If there are n

atoms involved, the dimensionality of the CM is n and for BoB it is n(n−1)
2 . In our

case, three metal descriptors are added to these counts.

Machine learning models are prone to overfitting for high dimensional cases [32]

if the training data are not large. For our propionic acid database, the largest in-

termediate species molecule has 11 atoms. To account for the surface interactions

with the various sites on the metal surface, we need to consider at least the top two

layers which means in our case 24 metal atoms. Our calculations were done with

and without the metal atoms. Leaving out metal atoms would certainly deprive the

predictor of important insights of the surface interactions, but it would also keep the

dimensionality lower and stop the algorithm from overfitting.
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When including the metal surface in our calculations, we removed the metal-metal

atom interactions to reduce the dimensionality. We also introduced a cutoff distance

to make the C(i,j)-th entry zero when the distance between the atoms involved exceeds

the cutoff value (in Angstrom). As discussed later, we tested different cutoff values

and different powers of the cutoff value c and that of r - the distance measure in the

Coulomb matrix. After these modifications the (i,j)-th entry had the form

C(i, j) = Zi ∗ Zj
rpower

− Zi ∗ Zj
cpower

(2.4)

where c is the cutoff distance. If one of the atoms involved in the (i,j)-th entry

was the metal atom, we tried taking the square root or natural logarithm of the

metal atomic number to come up with its Z value. This made sure that the entries

involving species-metal atom pairs did not have too large values compared to the

entries for species-species atom pairs. Here, we also tried approaches such as re-scaling

or standardization to reduce the magnitude of the metal atomic number. However,

our initial results found the square root or natural log to be superior to these and

hence, square root and natural log were used for the rest of the investigations.

Machine Learning Models

Several machine learning algorithms were applied and are briefly described below -

linear models such as linear regression, ridge regression, lasso; kernel based methods

such as support vector regression (SVR), kernel ridge regression (KRR), Gaussian

process (GP); and artificial neural networks (ANN). Kernel based methods consis-

tently achieved best results. Of these kernel based methods, Gaussian process is of

particular interest as it achieves results as good as SVR or KRR and at the same

time provides the uncertainty information which can be useful for subsequent steps

of macroscopic quantities of interest estimations, i.e., if one is interested in how the

uncertainty of a species energy affects the turnover frequency.

16



www.manaraa.com

A Gaussian Process (GP) is a collection of random variables such that any finite

subset of those variables has a multivariate normal distribution [33]. A Gaussian

Process’ behavior is primarily governed by the covariance function k(x, x∗) it uses.

The covariance function or the kernel defines the relation between any pair of data

points. The Gaussian process prior is zero mean with a valid covariance function k

(which means the matrix obtained by applying this function on each pair of points

must be positive definite [34]). The input error is normally distributed with variance

σ2 and the training set consists of input-output pairs (X, Y ) and the test inputs X∗

yield outputs Y ∗ in the form

Y ∗|Y,X,X∗ ∼ N (µp,Σp) (2.5)

where µp is the posterior mean,

µp = K(X∗, X)(K(X,X) + σ2
nI)−1Y (2.6)

and Σp is the posterior variance,

Σp = K(X∗, X∗) + σ2
nI −K(X∗, X)(K(X,X) + σ2

nI)−1K(X,X∗) (2.7)

where σ2
n is the noise variance. Each entry of the covariance matrix K contains

the kernel function evaluation for each pair of points. Of the many available kernel

functions, we used the most commonly used Gaussian kernel:

k(xi, xj) = σ2
yexp(−

(xi − xj)2

2l2 ) (2.8)

which can be extended to multi-dimensional scenarios. Here, σ2
y is the kernel variance

and l is the length scale. The length scale can be the same for all the dimensions

or a different length scale is learned for each of the dimensions - which is called

Gaussian Process with Automatic Relevance Determination (GP-ARD). In our case,

we used the standard GP as the initial results showed it to outperform GP-ARD for

our dataset.
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SVR, another kernel based method, is the extension of the classical support vector

classification (SVC) to solve regression problems. It uses a subset of the training data

(which are called support vectors) to make predictions. As with GP, there is a choice

of kernels that depends on the prediction task at hand. In our case, through the use of

5-fold cross-validation [35] we found that the Gaussian kernel worked best in our case.

Although the Laplacian kernel, which uses the Manhattan distance between the input

vectors instead of the squared one as in the Gaussian kernel, has been shown [36]

to work well in predicting different molecular properties, our results indicate that

the Gaussian kernel achieves slightly better results in predicting adsorption energies

compared to the Laplacian. Another kernel based method, KRR is similar to SVR,

but uses a different loss function, learns a non-sparse model and its estimation can

be done in closed form. Again, we found through 5-fold cross-validation that the

Gaussian kernel is superior for our dataset.

ANN, also known as Multilayer Perceptron, is a model that can learn highly non-

linear functions but suffers from a non-convex loss function and hence is prone to get

stuck in poor local minima or plateau [37]. With careful initialization and proper

hyperparameter (such as the number of hidden layers, number of units or iteration)

tuning, this problem can be minimized. The expressiveness of the model comes from

the fact that the hidden layers learn progressively more complex representations of the

input data. However, an ANN typically requires larger training data in order to find

a good generalization, which in our case is not available. For our dataset we found

that kernel based methods achieve better results than ANN. We applied different

regularization schemes such as L2 regularization, dropout, and early stopping to keep

the ANN model from overfitting. Other models, such as ridge, SVR, and KRR also

uses L2 regularization whereas LASSO uses L1 regularization to tackle overfitting.
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Table 2.1: Results of linear scaling using different sets of metal descrip-
tors to predict across metals.

Descriptor Combination MAE (eV) SD of AE (eV) SD of MAEs of Metals (eV)

CHCHCO,OH,C 0.120 0.110 0.037
CHCHCO,OH 0.138 0.149 0.052
C,OH,O 0.149 0.144 0.050
C,OH 0.153 0.143 0.058
C,O 0.195 0.184 0.077
C,H,O 0.203 0.190 0.080

Figure 2.3: Predicted energy (after referencing) vs actual energy (after referencing)
for predictions across metals, i.e., predicting adsorption energies of all intermediate
species for a metal given the energies for all the species for the rest of the metals. Left:
using linear scaling (linear ridge regression on the metal descriptors). Right: using
non-linear Method (KRR on metal descriptors). In both cases the the adsorption
energies of CHCHCO, OH and C were used as metal descriptors. The plots look very
similar. We performed a statistical test to see if there is any statistically significant
difference between the means of the absolute errors of the two methods. A p-value
of over 0.2 confirmed that there is no statistically significant difference between the
results of linear scaling and sophisticated machine learning methods (such as kernel
ridge regression in this case) when predicting across metals.

2.3 Results and Discussion

The data for the decarboxylation and decarbonylation of propionic acid contain infor-

mation on 26 intermediate species across 8 metal surfaces making the total size of the

data set 208. While predicting across metals, data for seven of the metals were used

for training and the eighth was used for testing. The process was repeated for each

of the metals. To test linear scaling, we used different combinations of adsorption en-
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ergies of molecules as descriptors. Not all combinations of descriptors achieved good

results as can be see in Table 2.1. Here, we see a comparison among different sets

of metal descriptors. Clearly, not all descriptor sets produced near-best results. The

set of descriptors (adsorption energies of CHCHCO, OH, C) that we found in our

analysis through principal component analysis (PCA) and varimax rotation shows

superior performance than other sets. The reported MAEs and the standard devia-

tions of the absolute errors (AE) are calculated on all 208 data points by training on

the data for seven metals and predicting on the eighth metal and repeating for each

of the eight metals. The statistical comparison between the second row (subset of the

descriptors obtained from our analysis) and the fifth row (common descriptors, not

including the first two optimum descriptors found in our analysis) has a p-value of less

than 0.001 which establishes a statistically significant difference between the results.

We followed a systematic machine learning approach to find the best descriptors -

by applying Principal Component Analysis (PCA) on the data and then performing

varimax rotations. This procedure gave us the optimum set of descriptors: adsorption

energies of CHCHCO, OH and C. We applied linear regression with L-2 regularizer

(also known as ridge regression) with the set of optimum descriptors. We also ap-

plied advanced non-linear machine learning methods such as SVR and KRR with this

descriptor set. The best MAE was approximately 0.12 eV for both linear regression

and for non-linear models. We also combined these metal descriptors with species

descriptors such as bond counts, Coulomb matrix and bag-of-bonds. The results of

non-linear models or the inclusion of species descriptors did not show any statistically

significant difference when compared to the linear scaling (with a p-value of over 0.1).

A comparison between the predictions of linear scaling and a non-linear method is

shown in Figure 2.3. Results for predictions across metals for linear ridge regression

and the kernel based methods are shown in Table 2.2. The first three rows shows

results for linear and non-linear models when using only these metal descriptors. For
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Table 2.2: Results of prediction across metals, i.e., given adsorption energies of all
intermediate species for seven metals, we tried to predict the adsorption energies for
all intermediate species of the remaining metal.

Method MAE (eV) SD of AE (eV) SD of MAEs of Metals (eV)

Ridge Regression with metal descriptors 0.120 0.110 0.037
SVR with metal descriptors 0.120 0.109 0.046
KRR with metal descriptors 0.127 0.118 0.050
GP with BoB, bond counts and metal descriptors 0.134 0.136 0.063
SVR with BoB, bond counts and metal descriptors 0.136 0.129 0.057
KRR with BoB, bond counts and metal descriptors 0.137 0.168 0.075

each species, training on data for seven metals and testing on the eighth and repeating

the process for each of the metals and each intermediate species gives us predicted

adsorption energies for each species on each surface. Absolute error (AE) for each

case is obtained by taking the absolute difference between the predicted and the real

energies. The mean and standard deviation of these absolute errors are shown in

the second and the third columns, respectively. Testing on each metal surface also

provided us a mean-absolute-error (MAE) for each metal. The standard deviation

of these MAEs are shown in the fourth column. The last three rows show results

when species descriptors such as CM, BoB, bond counts are included along with the

metal descriptors. In this case, the training set contained energies for all species for

seven metal surfaces and testing on all the species of the eighth and then repeating

the process for each metal. The results show that linear ridge regression with just

appropriate metal descriptors performs as good as the kernel based methods such as

kernel ridge regression (KRR) or support vector regression (SVR). Even with other

descriptors such as bag-of-bonds (BoB) or bond counts, the results are not better

than linear scaling with carefully chosen metal descriptors.

Predicting across metals and species requires some additional descriptors that

capture the representation of the species and the interaction between the species and

the surface. For this, we used simple descriptors like bond counts and more complex

descriptors such as Coulomb matrix (CM) and bag-of-bonds (BoB). We used different
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Table 2.3: Prediction across metals and species with non-linear and linear machine
learning methods with different sets of descriptors.

Species
Descriptors

Metal
Descriptors ML method Mean of

MAEs (eV)
SD of

AEs (eV)
SD of

MAEs (eV)

Bond Counts (Species and Metal) CHCHCO,OH SVR 0.133 0.129 0.023
Bond Counts (Species and Metal) CHCHCO,OH KRR 0.134 0.128 0.025
BoB incl metal, sqrt, cutoff 6Å, power 5 CHCHCO,OH,C GP 0.128 0.120 0.022
BoB incl metal, ln, cutoff 4.5Å, power 4 CHCHCO,OH,C GP 0.129 0.131 0.023
BoB power 5 + Bond Counts (Species and Metal) CHCHCO,OH,C GP 0.139 0.140 0.027
BoB power 1 + Metal Bond Counts CHCHCO,OH,C KRR 0.140 0.159 0.029
BoB power 4 + Bond Counts (Species and Metal) CHCHCO,OH,C SVR 0.142 0.134 0.024
CM power 1 + Bond Counts (Species and Metal) CHCHCO,OH KRR 0.145 0.155 0.026
Bond Counts (Species Only) CHCHCO,OH,C GP 0.185 0.186 0.030
Bond Counts (Species and Metal) CHCHCO,OH ANN 0.214 0.205 0.064
BoB incl metal, ln, cutoff 6Å, power 2 CHCHCO,OH Ridge 0.277 0.245 0.042
BoB power 2 + Bond Counts (Species and Metal) CHCHCO,OH Lasso 0.293 0.272 0.041
CM power 4 + Bond Counts (Species and Metal) CHCHCO,OH,C Elastic 0.294 0.274 0.038
Bond Counts (Species and Metal) CHCHCO,OH Ridge 0.347 0.295 0.045

combinations of these descriptors along with the metal descriptors that we already

have. We also tried different values of power and cutoff (in equation (2.4)). In

this scenario, the non-linear ML methods fared much better than the simple linear

models (see Table 2.3). Non-linear ML models used here are artificial neural network

(ANN) and Kernel based methods like support vector regression (SVR), kernel ridge

regression (KRR), and Gaussian process (GP). Kernel based methods outperform

ANN. The top row contains the result for the same case as the left image of Figure 2.5.

The tenth row contains the result for ANN. The 3rd and the 4th rows show the results

for BoB with metal atoms included, with different cutoff values and different methods

(natural log and square root) to minimize the difference between metal and species

atoms’ atomic number. The ninth row contains the result for the species only bond

counts which can be obtained by pen-and-paper chemistry. The bottom four rows

present the results for linear machine learning models. These models vary in terms of

the regularizer that they use - in case of ridge it is L2 regularizer, in case of lasso it is

L1 regularizer and for elastic it is a combination of both regularizers [38]. Comparing

the prediction errors with that of the non-linear models in the top rows of the table

clearly shows the value of advanced ML methods in a full predictive model, i.e., when
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we try to predict not only across the metals but across the species as well. In order to

get an unbiased estimate of the prediction error, we randomly permuted the data 100

times and at each time we split it into training and testing sets (with 160 and 48 data

points for training and testing, respectively) and get a Mean Absolute Error (MAE).

The mean and the standard deviation of these MAEs are reported in the fourth and

the sixth column, respectively (since each run has the same number of testing points,

the mean of MAE equals the mean of the absolute errors over 100 runs). The fifth

column presents the standard deviation over all the absolute errors. Here, metal

bond counts refer to the carbon-metal and oxygen-metal bond counts. Power refers

to the exponent in the denominator of equation (2.4). Cutoff refers to the base of the

denominator of the second term of equation (2.4). We tried with powers 1 to 5 and

cutoff values from 2.5Å to 6.0Å with 0.5Å intervals. While the kernel based methods

achieved an MAE of approximately 0.13 eV, linear regression with L-2 regularizer

had an MAE exceeding 0.28 eV. These results signify the importance of advanced

ML techniques for a full predictive model of adsorption energies of various species on

different surfaces.

The predictions of machine learning algorithms are highly dependent on an ap-

propriate choice of the hyperparameters. In our case, different sets of descriptors for

an ML method would require different hyperparameters. So for each ML method and

each descriptor set, we first divided the randomly shuffled data into training and test-

ing sets; then, we ran five-fold cross validation on the training set to obtain optimal

hyperparameters. After that, we obtained the prediction errors on the testing set

using those hyperparameters. This process was repeated 100 times with the data set

randomly shuffled each time to obtain an unbiased estimate of the prediction error for

each machine learning method and each descriptor set. Out of the 208 data points,

we used 160 for training. The prediction errors tend to decrease with an increase in

training size. However, this rate of decrease diminishes as more training points are
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added as is evident in Figure 2.4 and it is not clear that the MAE could be reduced

significantly below 0.1 eV by increasing the training set size.

Figure 2.4: Mean Absolute Error (MAE) of prediction vs training set size while pre-
dicting across metals and species, i.e., we are testing on a set of randomly chosen rows
from the full dataset (which can contain rows from any metal or species) given the rest
of the rows for training. The ML model used here was the Gaussian process (GP)
and the descriptors were the bond counts (carbon-carbon, carbon-oxygen, carbon-
hydrogen, oxygen-hydrogen, carbon-metal and oxygen-metal bond counts) and the
metal descriptors (adsorption energies of CHCHCO, OH and C). We found simi-
lar trends for other ML models and different combinations of descriptors. For each
training set size, data was randomly permuted 100 times and split into training and
testing set. The means of these 100 runs are shown here. The standard deviation
of the MAEs for each training set size provides the 95% confidence interval which is
shown in the shaded region.

A comparison between the prediction errors of the non-linear ML model and linear

regression is presented in Figure 2.5. The linear case has many more points deviating

from the ideal prediction line compared to the non-linear method. Some better results

on different descriptor sets for non-linear methods such as the ANN and kernel based

methods - SVR, KRR, and GP are shown in Table 2.3. For predictions from GP, we

have extra information about the uncertainties around the prediction points. This
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uncertainty information allowed us to calculate 95% confidence intervals around each

prediction point for GP. We found each of the actual energies to lie within this interval

which indicates that GP captured the uncertainty well. Comparing the results of the

kernel based models after hyperparameter tuning, we found no statistically significant

difference among themselves. As we ran predictions hundred times for each case, the

table shows the mean and standard deviation of the absolute errors of all runs and

the standard deviations of the MAEs of those runs.

Figure 2.5: Comparison between the predictions from kernel based ML models (on
the left) and linear scaling (on the right) while predicting across metals and species,
i.e., we are predicting a test set which is chosen randomly from the whole dataset
and thus, it can contain rows from any combination of metal or species. The rest of
the data is used for training. We used 160 data points for training and the rest for
testing. For each machine learning method and each descriptor set, we split the data
into training and testing set after randomly shuffling it, then we performed 5-fold
cross-validation on the training set to find optimized hyperparameters which we then
used to get the MAE on the testing set. We repeated the process one hundred times
to get an unbiased estimate of the prediction error. On the left: results from running
support vector regression (SVR) with bond counts (C-C, C-O, C-H, O-H, C-M and
O-M counts) and metal descriptors (adsorption energies of CHCHCO, OH). On the
right: results from running linear ridge regression with bag-of-bonds (BoB) and same
metal descriptors. Unlike Figure 2.3, here we see the kernel based method predicted
much closer to the ideal line consistently and the statistical test that we performed
showed that the prediction errors from advanced ML methods were lower than those
from linear scaling. When predicting only across metals, we can use just the metal
descriptors for which linear scaling works well; but for a full general predictive model
like this, we need additional descriptors to represent the species and then we need
more sophisticated ML models.
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The results in Table 2.3 show that simple descriptor sets like bond count (with

appropriate metal descriptors) worked nearly as well as the more complex descriptors

such as CM and BoB. The bond counts contain the number of bonds inside the

species and between the species and the surface. If we omit the C-M and O-M which

are the metal bond counts, we are left with a species-only-bond-count that can be

obtained by just pen-and-paper chemistry without any geometry data. As can be

seen in Table 2.3, this case has an MAE less than 0.19 eV. The table also shows that

when using geometry based methods such as bag-of-bonds, including metal surface

with the BoB computation (the 3rd and the 4th rows) yield slightly better result

than when using the BoB on the species alone and then incorporating the C-M, O-M

bond counts (the sixth row), but still no statistically significant improvement is found

compared to simple bond counts (top two rows). The results for linear methods are

shown at the bottom four rows of the table. Again, the advantage of using advanced

ML models in this case is evident from the results.

2.4 Conclusion

Effective prediction of adsorption energies on heterogeneous catalyst surfaces requires

beyond a database, both a proper set of descriptors and proper choice and calibration

of the machine learning model. We have studied both of these in the current work.

An automatic method to discover effective metal descriptors is presented based on

PCA and varimax rotation. Our comparative study has illustrated that when predict-

ing adsorption energies for the species on a metal surface given the energies of those

species on other surfaces, linear scaling with appropriate metal descriptors holds well

with MAE of approximately 0.12 eV. In this case, we found no statistically significant

difference between the performances of the regularized linear regression and that of

the advanced ML models. However, we have shown that an appropriate choice of

descriptors, which can be obtained by our proposed method, is necessary and the
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results of commonly used descriptors can be significantly inferior compared to the

predictions from an optimum descriptor set. We also studied an uncommon scenario

in catalyst screening where we predict random species on random metal surfaces given

random training data. While such a scenario is currently rarely used, we believe it to

become more relevant when more complex reaction mechanisms are studied on sur-

faces and preliminary mechanisms are found to be incomplete, i.e., there is a desire

to extend the mechanism in a more ad hoc fashion. In this case, where we combined

other species descriptors along with the metal descriptors, we found the non-linear

ML models to significantly outperform linear models with an MAE of 0.13 eV. In-

terestingly, comparing this result with that of the prediction across metals suggests

that given data on a sufficient number of metal surfaces for a species, information

from other species, even with full optimized coordinate information, do not add much

to the learning of the energy for that species on a new metal surface. However, in-

formation from other species becomes useful when very few data for that species on

different metal surfaces are available (a likely case for random training data). Another

key outcome of these studies is that advanced machine learning models work well in

any scenario of predicting adsorption energies on the surface. Our investigations

with different descriptors show that for ML models to succeed, it is not necessary

to use advanced (geometric) coordinate based descriptors; simple descriptors such as

bond count can provide satisfactory results. As many catalysis and materials science

problems require significant time to generate each data point, in many cases the ML

models would need to work with a relatively small sized dataset. This requires careful

tuning of hyperparameters using cross-validation, use of regularization to account for

overfitting, and reducing the dimensionality of the descriptor space - all of which have

been studied in the present work. Our studies and investigations have shown that it

is possible to predict the adsorption energies using machine learning with reasonable

accuracy when all these constraints are properly addressed.
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Chapter 3

A Multiple Filter Based Neural Network

Approach to the Extrapolation of Adsorption

Energies on Metal Surfaces for Catalysis

Applications

3.1 Introduction

Computational catalyst discovery typically requires the development of a microki-

netic model based on parameters determined by density functional theory (DFT)

calculations [6] of all reaction intermediates [39]. To minimize the cost of calculating

the energies for each reaction intermediate and transition state on different active

site models, linear scaling relations [9, 10, 12] have been proposed which use a few

easily computable descriptors, such as the carbon atom adsorption energy, on differ-

ent active site models to generate volcano curves on catalyst activity [40]. However,

even the DFT computations for only the intermediate species on a number of surfaces

require, for a large reaction network with many intermediates, a significant number

of expensive calculations. In this work, our goal was to build a predictive framework

that would train on the energies of some of the surface species and predict on the

rest, which can significantly reduce the computational overhead when working with

a complex microkinetic model with a large number of surface species. In addition to

that, we also investigated appropriate predictive models for extrapolation of adsorp-

tion energies in terms of the size of the species, i.e, when the training data and the
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prediction set contain different sized molecules. This is typically challenging because

machine learning models, while performing satisfactorily during interpolation (when

training and testing set come from the same area of the feature space), do not work as

well for extrapolation [41] (when training and testing set come from non-overlapping

regions of the feature space).

In this paper, we have worked with two data sets of adsorption energies, both

containing reaction intermediates consisting of carbon, oxygen, and hydrogen atoms.

One of them contains 247 larger C4 species, i.e, molecules with at least four carbon

atoms and variable numbers of oxygen and hydrogen, obtained from the hydrodeoxy-

genation of succinic acid on Pt(111). The other contains 29 smaller C2 and C3 species,

i.e, molecules made up of two or three carbon atoms along with some oxygen and/or

hydrogen, obtained from a reaction network of decarboxylation and decarbonylation

reactions of propionic acid on Pt(111) [11]. All calculations were done using the

PBE-D3 functional. Two types of predictive analysis were performed - interpolation

on the bigger C4 dataset, i.e, training on some of the C4 species and predicting on

the rest of them; and extrapolation from the C4 data set to the C2 and C3 data set,

i.e, training on the full C4 data and predicting the adsorption energies for the C2

and C3 species. While extrapolation to longer chain molecules is in principle most

relevant, we do not possess a C5 dataset and the C2 and C3 datasets are too small to

be used for extrapolation to C4 species. Nevertheless, extrapolation from C4 to C2

and C3 is technically as challenging as extrapolation to longer chain molecules and

we expect all of our conclusions to also be valid when extrapolating to longer chain

molecules provided these do not contain any chemical fragment that is non-existent

in the smaller training molecules.

Predicting properties of some chemical entity using machine learning [16, 17] in-

volves solving two related subproblems - discovery of effective features or descriptors,

and using a proper machine learning model that, together with the chosen descrip-
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Figure 3.1: An overview of the application of machine learning for prediction of
adsorption energies. Structures of the intermediate species are used to obtain a
suitable fingerprint, which is fed to ML models that learn the adsorption energy as a
function of the fingerprint vector.

tor, works best for the specific task at hand [7]. A high-level workflow for applying

machine learning for this process is shown in Figure 3.1. Here, we are trying to

predict the adsorption energies of surface intermediates and hence, the descriptors

are essentially some form of molecular fingerprints. Many different kinds of fin-

gerprints or fingerprint generation schemes have been proposed in previous studies

- Coulomb matrix [19] and bag-of-bonds [20] using distance measures between the

atomic coordinates of the species; atom centered radial or angular symmetry func-

tions [42, 43, 44, 45]; non-coordinate based fingerprints that take into account features

of a molecule which can be extracted from the chemical formula or SMILES nota-

tion [46, 47, 48, 49]; generation of fingerprints from molecular graph structure [50, 51]

where the atoms and the bonds are considered as the nodes and edges of a graph,

respectively, and fingerprints corresponding to a target property learned using back-

propagation etc. Fingerprints based on SMILES or graph have the desirable property
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over the coordinate based descriptors that any DFT or other semi-empirical methods

need to be applied only on the training data; for the rest of the data for which the

adsorption energies are unknown, their molecular notation is all that the predictive

model would need to make the predictions. In contrast, the coordinate based meth-

ods would need reliable atomic coordinates even for the species on the prediction set

which would require some form of expensive calculations - ones we wish to minimize

in the first place. Most commonly used machine learning models have been kernel

based models such as kernel ridge regression [18] and different neural network based

models such as graph convolution [50, 51], recurrent neural network [52], 3D convo-

lutional neural network which reads the 3D spatial coordinates of the molecule [53],

or additive atomic contribution through atomic subnetworks [16, 42].

In our investigations for interpolation of adsorption energies, we have studied both

the coordinate based and SMILES based descriptors along with a variety of machine

learning models. Our results indicate that simple molecular descriptors that cap-

ture the nearest neighbor information across the species from the SMILES notation,

paired with kernel based models can perform as good as coordinate based descriptors

such as Coulomb matrix or bag-of-bonds with a mean absolute error (MAE) of 0.14

eV. However, for extrapolation, the choice of descriptor is more complex - descriptors

based on pairwise or triplet atomic distances such as Coulomb matrix or bag-of-bonds

have the disadvantage that they are not size extensible. For data with different sized

species, smaller ones have to be padded with zeros that make the learning difficult.

In this case, constant sized molecular fingerprints [54] are more suitable. Our results,

however, suggest that the predictive errors are still quite high for these descriptors. A

different kind of approach, which is atom centered and where each atom’s neighbor-

hood information (its pairwise and triplet distances from other atoms) is treated as

the atomic fingerprint and fed to a small neural network where these subnetworks from

each atom share their weights, and then all of the atoms’ contributions are added up
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to get the final energy, is size extensible. We found this method to work better than

the other methods for extrapolation with MAEs of around 0.4 eV. However, the error

is still large and we have sought ways to improve upon this model. One improvement

was to include SMILES based atomic fingerprints over the coordinate based ones,

and the second contribution, that helped to get significantly smaller extrapolation

errors, was to treat the small atomic subnetworks like a filter of a convolution neural

network and use multiple of these filters. This method had extrapolation MAE of

0.23 eV.

3.2 Methodology

Molecular fingerprints used in our investigations can be categorized into three classes:

first, coordinate based Coulomb matrix and bag-of-bonds that use pairwise distances

between the atoms in the molecule to generate the fingerprint; second, flat finger-

prints based on the number of different bond counts inside the molecule that can be

read from the chemical formula or SMILES notation; third, atom centered finger-

prints that are based on the local neighborhood around an atom which is calculated

either by distance measures between the atomic coordinates or by the number of

different bond types for the atom that can be read from the molecular notation. Ma-

chine learning models that we have used can also be divided into three categories:

generalized linear models such as linear regression, ridge regression (which uses L2

regularizer), LASSO (which uses L1 regularizer); kernel based models such as kernel

ridge regression (KRR), support vector regression (SVR), Gaussian processes (GP);

and artificial neural networks (ANN).

3.2.1 Coulomb Matrix and Bag-of-bonds

The Coulomb matrix (CM) method first creates a symmetric matrix where the off-

diagonal element C(i, j) is a function of the distance measures between the i-th and
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j-th atoms and also their atomic numbers. The diagonal elements are a function

of the atomic number of the corresponding atoms. The sorted eigenvalues of the

matrix forms the molecular fingerprint. The Bag-of-bond (BoB) method takes the

off-diagonal lower triangle of the symmetric matrix formed in CM and puts the entries

corresponding to each atom type pair in a bag, sorts the entries inside each bag

and concatenates the bags to form the fingerprint vector. We have found these

methods to typically work well for interpolative predictions among the same sized

species. However, for data with variable sized species, one needs to pad the entries

of the matrix for smaller species with zeros. This limits their usefulness for size-

extrapolation predictions. Detailed methods for building CM and BoB are described

in the supporting information.

3.2.2 Flat Molecular Fingerprint

Fingerprints generated from the SMILES notation of the adsorbed species encode

the connectivity among the atoms inside the molecule. The encoding can capture the

number of different types of atoms or bonds by looking into the nearest neighbors

of each atom or upto some specified distance. In our study, we have built a simple

scheme, similar to previous work on constant-sized descriptors [54], that looks into

the nearest neighbors of the atoms and counts the number of different atom types

an atom is connected to, and then accumulates the results in a fingerprint vector.

The proposed fingerprint is shown in Figure 3.2. Here, atom types are divided into

subclasses by the number of free valencies an atom has, e.g, instead of just looking

at how many carbon-carbon bonds are present, the fingerprint captures how many

saturated carbon atoms are single bonded to a carbon with one free valence, or how

many oxygens are double bonded to a saturated carbon atom and so on. This is a

constant sized molecular descriptor as the length of the vector remains the same for

smaller or bigger molecules.
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Figure 3.2: Molecular fingerprint for the surface species CH3CHCOO. Here, C0
denotes a saturated carbon (no free valence). C1, C2, and C3 denote carbon atoms
with one, two, and three free valencies, respectively. Similarly, O0 is a saturated
oxygen whereas O1 is an oxygen atom with one free valence. The fingerprint vector
(shown at the bottom of the image) contains the number of different saturated or
unsaturated atoms, and the number of bonds between them.

As will be discussed later, this method works well for interpolation and works

better than CM or BoB for extrapolation, but the extrapolation error was still quite

large. Both, the flat molecular fingerprint and CM/BoB, can be fed to any regular

ML model such as linear model, kernel based model or fully connected feed forward

neural network. In each case, the ML model takes as input the molecular fingerprint

vector and outputs the target real value (in our case, adsorption energy). We have

also tried the extended connectivity based fingerprint (ECFP) [46] which produces

fixed length vectors from the SMILES notations of the molecules.

3.2.3 Additive Subnetwork Model

The atomic fingerprint based additive subnetwork model is a size extensible model.

The atomic fingerprint originally used [42] for this model were the symmetry func-
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Figure 3.3: The network for the atomic contribution method. First, symmetry func-
tions are calculated from the atomic coordinates of all the atoms in the molecule.
Typically, two symmetry functions are used: one that aggregates the pairwise dis-
tance information centered around each atom; the other that combines the angular
distance information from a triplet of atoms. Other symmetry functions can be de-
vised, too. Here, Gi denotes the vector containing the symmetry function values for
the i-th atom. For each atom, its corresponding G vector is fed to a neural network
(NN). The networks for all the atoms share weights which makes the method to work
with any ordering of atoms. Each atomic NN learns the energy contribution of the
corresponding atom to the total energy of the species. All the atomic contributions
are summed to get the predicted energy. The structure of the atomic NN can be
adjusted as shown in the bubble at the bottom of the figure.

tions calculated from the atomic coordinates of all the atoms in the molecule. Two

commonly used symmetry functions are: one that aggregates the pairwise distance

information centered around each atom; the other that combines the angular distance

information from a triplet of atoms (equations for these distance measures are given

in the supporting information). Other symmetry functions can be devised, too. The

model is shown in Figure 3.3.

Fingerprints for each atom are fed to a small neural network. These subnetworks

learn the energy contribution of the current atom to the total energy as a function of
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Figure 3.4: Our proposed non-coordinate based atomic fingerprints for the atomic
subnet based method. These fingerprints can be obtained directly from the SMILES
notation of the molecule without the need of any atomic coordinates. Three sample
fingerprint vectors for two carbon atoms and one oxygen atom are shown. The vectors
contain the information about the number of different types of bonds for an atom.
For example, the vector item −C1 contains the number of single bonds the current
atom has with carbon atoms that contain one free valence. The 5th to 7th positions
of the fingerprint vectors have different meaning for carbon and oxygen atoms, e.g,
in the 7th position, for carbon, = O denotes how many oxygen the current carbon
atom is bonded to by double bonds, whereas for oxygen, = C2 encodes the number
of carbon with two free valencies that the current oxygen atom is connected to by
double bonds.

the fingerprints. Aggregated energy contributions from all the subnetworks yield the

final energy. Subnetworks for all the atoms of an atom type share their weights. The

weights can also be shared across the atom types. We have found the latter approach

to work better for our case. The weight sharing ensures that the model is invariant to

the ordering of the atoms. In contrast to other models, this one can only work with

neural networks because it gives the flexibility of a hierarchical structure through

the use of the back-propagation method to learn the network weights. In order to

avoid the computation of reliable coordinates for the prediction set, we prefer the

SMILES based fingerprints. We have developed such an atomic fingerprint, shown
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in Figure 3.4, that is similar to the flat molecular fingerprint described above, but

is centered on an atom and encodes the connectivity information for that atom.

We have found this model to work better for extrapolation compared to CM, BoB

or flat fingerprints, but the errors were still quite large which warranted a further

improvements to the model.

3.2.4 Proposed Multiple Filter based Additive Subnetwork Model

To make the additive subnetwork based model generalize better to an unseen testing

data, we propose to treat the shared weights of the atomic subnetworks as a filter in a

convolutional neural network (CNN). This type of deep learning model is commonly

used for image data where different sets of weights (called convolutional filter) scan

through the image patches and learn to detect various basic image features such as

edges or corners [55] which are combined in subsequent layers to detect higher level

objects such as a face or a car or a digit [4]. These filters are analogous to the local

receptive field in biological visual systems [56, 57]. In CNN, the filters are usually

2D or 3D matrices of weights. A filter is placed on a patch of the image and a

cross-correlation operation between the filter weights and the input plane pixels is

performed - this is the output of that filter for that image patch. Then, the filter is

moved to the next adjacent patch (which may or may not overlap with the previous

patch). A key observation here is that there is not one but a number of filters that

are used because each filter learns different features (through back-propagation) [58].

Moving to our problem and the atomic subnetworks, we can think of a subnetwork

as a filter in CNN. Since all of the subnetworks share their weights, they can be

considered as one filter scanning each of the atoms in the molecule one by one.

Unlike CNN, however, in our case the subnetworks compute a non-linear function

of its inputs instead of the cross-correlation, which makes sense since predicting ad-

sorption energies is a regression problem and we want each subnetwork to learn the
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Figure 3.5: Our proposed Model. A species with 3 carbon and 2 oxygen atoms is
passed through k filters. Each filter is an 8 by 10 by 1 neural network. For each
filter, outputs of networks for each of the three C atoms is summed up, same is done
for the two O atoms. The weighted sum of these two sums is the output for one
filter. The final output is the weighted sum of all the filter outputs. The parameters
of the network that are learned through back-propagation are: W (i)s, WC , WO, and
network weights for each filter.
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energy contribution of an atom. Also, unlike CNN, here we do not need multiple

layers of filters as our learning objective is to find the individual atom contribution

to the total energy.

However, the aspect of CNN that can be incorporated in our networks and that can

lend the additive subnetworks a better representational ability is to use multiple filters

instead of one. Here, we should clarify that using multiple filters does not mean using

separate filters for different atom types. Whether we use different shared weights for

different atom types or not, by ’multiple filters’ we are referring to completely separate

sets of filters (in each set, there may be one filter if all atom types share the weights,

or more than one if weights are shared only inside each atom type). In our proposed

model, each of the separate set of filters would scan each atom of the molecule and

the weighted sum of all the filtered values should yield the final output energy.

The proposed model is shown in Figure 3.5. The atomic fingerprints are the 8-

length vectors from Figure 3.4. During the training of the network, at each iteration

of the gradient descent, there is a forward pass that starts from the fingerprints at

the left of the figure and moves to the right. The gradient of the error in the energy

obtained at the right-most node is then back-propagated through the network which

makes it learn the appropriate weights to fit the data. Nonlinearity in the computation

comes from the nonlinear activation functions used in the hidden layers of the filters.

The error function (that the gradient descent tries to optimize) for neural networks

is non-convex [59] - there can be many local minima. This means the output of a

neural network is sensitive to the starting points of its weights - starting from different

points in the hyperspace can result in different ending locations. Since the weights

of each filter are randomly initialized [60, 61], each of them is likely to end up with

different weights than others even though all of them are fed the same set of atomic

fingerprints, i.e, each of them learns different functions of their inputs, just like each

CNN filter learns to detect different image features. Let us assume there are K filters
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and the functions that they learn are denoted as f (1), f (2), ..., f (K) and the output of

the i-th filter (after combining outputs of that filter for each atom in the species) is

E(i). Then, the overall energy output of the networks, E is

E =
K∑
i=1

E(i)W (i) (3.1)

where W (i) is the weight of the contribution for the i-th filter and

E(i) =
T∑
a=1

E(i)
a Wa (3.2)

where T is the number of atom types in the species that have fingerprints (in our

case, it is 2, for C and O; since those two atom types can describe all the bonds inside

the species, we have not included fingerprints for H), E(i)
a and Wa are the summed

contribution for all the atoms of atom type a when passed through filter i, and the

weight for that atom type which is shared across the filters, respectively. So,

E(i)
a =

Na∑
n=1

E(i)
an (3.3)

where E(i)
an is the output when the n-th atom of atom type a is passed through filter i.

The last equation means the atomic contribution of all the atoms for an atom type for

a filter are directly summed and not weighted (which can be treated like a constant,

non-learnable weight of 1). This ensures that a change in the relative ordering of the

atoms (inside the set of atoms of an atom type) does not change the overall result.

If the atomic fingerprint for the atom an is Xan , then E(i)
an is a non-linear function of

Xan :

E(i)
an = f (i)(Xan) (3.4)

Here, the fingerprint is passed to the filter which, in our case, is a small fully connected

feed-forward neural network (NN). The output of each layer in the NN is computed

by multiplying the weight matrix between the current and the previous layer with

the output vector of the previous layer and then passing the obtained vector to a

non-linear activation function [62, 63, 64].
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Table 3.1: Interpolation results with following methods used: Coulomb matrix, bag-
of-bonds, flat molecular fingerprint, and additive atomic subnetwork model (See dis-
cussions for details).

Method ML model MAE (eV) SD of AE (eV)
Coulomb matrix GP 0.230 0.218
Bag-of-bonds KRR 0.139 0.136
Bag-of-bonds Ridge 0.219 0.279
ECFP SVR 0.165 0.179
Flat molecular fingerprint (from SMILES) SVR 0.148 0.129
Flat molecular fingerprint (from SMILES) KRR 0.141 0.122
Flat molecular fingerprint (from SMILES) Ridge 0.196 0.166
Additive atomic subnetwork ANN 0.398 0.202
Proposed model (from coordinates, 1 filter) ANN 0.347 0.259
Proposed model (from coordinates, 4 filters) ANN 0.309 0.231
Proposed model (from SMILES, 1 filter) ANN 0.190 0.164
Proposed model (from SMILES, 6 filters) ANN 0.142 0.120

3.3 Results and Discussion

Table 3.2: Extrapolation results with following methods used: Coulomb matrix, bag-
of-bonds, flat molecular fingerprint, and additive atomic subnetwork model (See dis-
cussions for details).

Method ML model MAE (eV) SD of AE (eV)
Coulomb matrix SVR 2.392 1.015
Bag-of-bonds KRR 2.046 0.422
ECFP SVR 2.961 0.760
Flat molecular fingerprint (from SMILES) KRR 2.342 0.625
Additive atomic subnetwork ANN 0.441 0.214
Proposed model (from coordinates, 1 filter) ANN 0.324 0.212
Proposed model (from coordinates, 4 filters) ANN 0.282 0.190
Proposed model (from SMILES, 1 filter) ANN 0.434 0.314
Proposed model (from SMILES, 5 filters) ANN 0.227 0.143

In our investigations, we have used Coulomb matrix, bag-of-bonds, flat molecu-

lar fingerprints (non-coordinate based, calculated from the SMILES), and additive

atomic subnetwork models for both interpolation and extrapolation. Key results are

shown in Table 3.1 and Table 3.2, respectively. The supporting information contains

full tables of all results. For interpolation, for the first seven rows, for each of the
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methods, we ran the following ML models: ridge regression, LASSO, kernel ridge

regression (KRR), support vector regression (SVR), Gaussian processes (GP). The

rest of the rows used artificial neural networks (ANN). Some of the results from each

category are shown. The first and second columns show the descriptor method and

the ML model used, respectively. The third column contains the mean absolute error

(MAE) of the predicted adsorption energies, and the fourth column presents the stan-

dard deviations of the absolute errors. Data for the 247 C4 species were randomly

permuted and 215 were used for training and the rest for testing. The process was

repeated 100 times (data being permuted randomly each time) to obtain an unbi-

ased estimate of the MAE. For extrapolation, for the first four rows, for each of the

methods, we ran the following ML models: ridge regression, LASSO, kernel ridge

regression (KRR), support vector regression (SVR), Gaussian processes (GP). The

rest of the rows used artificial neural networks (ANN). Some of the best results for

each method are shown. The first and second columns show the descriptor method

and the ML model used, respectively. The third column contains the mean absolute

error (MAE) of the predicted adsorption energies, and the fourth column presents

the standard deviations of the absolute errors. Data of 247 C4 species were used for

training and data of 29 C2 and C3 species were used for testing. Here, the table

for interpolation shows that non-coordinate based molecular fingerprints with kernel

based ML models perform as good as coordinate based descriptors with the same ML

models. The additive atomic subnetwork based on SMILES with multiple filter also

worked well. For this model, we also used a coordinate based atomic fingerprint of

length 5 - aggregated pairwise distance measures from an atom to each of the four

atom types involved (carbon, hydrogen, oxygen and top two layers of metal catalyst

surface), plus the triplet distance measure.

For extrapolation, both the Coulomb matrix and bag-of-bonds performed poorly.

This is not unexpected since these methods are not size extensible and require padded
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zeros to make them work for different sized molecules. From this point of view, the

flat molecular fingerprint comes as an attractive alternative as it is a constant sized

descriptor (size of the molecule does not effect the size of the vector; no zero padding

is required). But our results show that it performs no better than CM or BoB for

extrapolation. However, the method that we found to be most promising was the

additive atomic subnetwork. Since this method adds up the atomic contributions to

the total energy, it is naturally size extensible. The initial predictive error obtained

using this method (with the length 5 fingerprint discussed above) was approximately

0.4 eV. As a neural network ends up in a different location of its parameter hyperspace

on different runs (because of randomly initialized parameters), we ran the model

multiple times and our final result was an ensemble of these runs - for each target

species, its predicted adsorption energy was the mean of its predicted values of all the

runs. This yielded an extrapolation error of approximately 0.32 eV. The ensemble

method was used in all of our following models.

The next step was to replace the coordinate based atomic fingerprints with SMILES

based ones (Figure 3.4). However, only replacing the atomic fingerprints in the ad-

ditive subnetwork model actually increased the predictive errors to over 0.4 eV. We

improved this model by using multiple filters as discussed before (Figure 3.5). The

predictive errors went down significantly as more filters were used. The rate of im-

provement, however, gradually subsided and after incorporating a certain number of

filters, the predictive errors change very little, as can be seen in Figure 3.6. We used

this multi-filter approach with the coordinate based atomic fingerprints as well, and

the extrapolation error there went down to 0.28 eV from over 0.32 eV.

Here, we should note that, the number of filters is essentially a hyperparameter to

our model and needs to be tuned for specific problems. Tuning of hyperparameters

for machine learning models is typically done by setting aside a portion of the training

set as validation set and choosing the hyperparameters for which the model performs
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Figure 3.6: Extrapolation errors decreased sharply with the use of more filters. At one
point, however, it reaches a state where adding more filters does not make any signif-
icant improvement. The model used here is our proposed model shown in Figure 3.5
and the atomic fingerprints were the ones shown in Figure 3.4.

best on the validation set. The chosen model is then used to run on the testing set.

We also used this approach. This works well for interpolation problems where the

training (which includes the validation set) and testing sets reside in the same region

of the parameter space. But in case of extrapolation, this might not work.

Through our investigations, we have seen that for extrapolation, the error on the

validation set (which is part of the training set, containing C4 species) went to an

approximate minimum value when 6 filters were used and then remained more or

less constant. But the extrapolation error on the testing set (containing C2 and

C3 species), after the network was trained with different numbers of filters, reached

minimum with 5 filters. This can occur for other ’pure extrapolation’ settings where

a low validation error does not always correspond to a low test error. In this case,

if a small amount of data from the test space (which, in our case, were C2 and

C3 species) can be obtained, that can be included in the validation set to tune the
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Figure 3.7: Weight matrices for the 8 filters learned by running our proposed model.
Each of the eight 8-by-10 matrices contains the values of the weights that connect
each of the 8 atomic fingerprint values (which, according to Figure 3.4 are the number
of different bond types an atom is connected to) to the 10 hidden units denoted as
H1 to H10 (the left half of each subnetwork or filter shown in Figure 3.5).

hyperparameter more effectively. The problem setting, however, would no longer be

a ’pure extrapolation’ as small amount of data points from the test space are included

during the training phase.

Figure 3.7 shows the values of the learned weights between the input layer and

the hidden layer for each filter when 8 filters were used. For each matrix, a row

corresponds to the 10 weights going out of one fingerprint value (see Figure 3.4). A

column corresponds to the 8 values going into a hidden layer unit. There are three key

observations here. First, each filer learns a different function of its inputs. Second, the

sixth and seventh row contain weights with high absolute values. This is because the

weights were shared across the atom types, i.e, fingerprints from carbon and oxygen
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atoms were fed to the same filters; and according to Figure 3.4, some of the entries

at the same location of the fingerprint vector for carbon and oxygen carry a different

meaning. According to this, the fifth, sixth, and seventh entries have to encode more

information and hence the network learned higher valued weights for some of those.

And finally, the fourth row for each of the filters learned close-to-zero weights. The

fourth entry in the atomic fingerprint is the count of the number of carbon atoms

that the current atom is bonded to where the carbon atom has three free valencies.

In our training set, there was no such species. So, the network did not learn any

significant value for those weights. This also signifies that if any species in the target

set contains such a structure, its prediction would be inaccurate. Indeed, we found

that two species, CH2C and CH3C (not included in the 29 species used as our target

set), both containing this type of structure, had very high prediction errors (around

1 eV). This observation signifies a fundamental limitation in machine learning based

models - the predictions can be at most as good as the data that is fed to train the

model. The model learns from the training data the adsorption energy as a function

of the basic building blocks or fragments that make up a chemical species, such as

the information on how many free valencies an atom has, or how many unsaturated

carbon atoms an atom is connected to, etc. The effectiveness of the model, hence,

is dependent on how well the encoded structural information in the fingerprint can

describe the differences between the target property (here, adsorption energy) among

different chemical species. Fragments that are absent in the training data, such as

aromatic rings, are not learnt by the model and thus, the model will likely fail for

species containing such fragments.

3.4 Conclusion

In this paper, we have performed a detail investigation on a predictive model for

both interpolation and extrapolation of adsorption energies of hydrocarbon species
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on Pt(111) catalyst surface. We have compared the effectiveness of different finger-

prints and ML models. For interpolation, our results indicate that a simple SMILE

based fingerprint calculated from nearest neighbors with kernel based ML models

perform very well for interpolation of adsorption energies with an MAE of 0.14 eV.

However, when predicting adsorption energies of species of different size from that of

the training set (extrapolation), only an additive atomic contribution based model

works reasonably well. To improve upon this method, we have developed a multi-

filter based weighted additive model that combines the established additive model

with the concept of filters from a convolutional neural network. Our findings show

that this approach is highly generalizable compared to other models and leads for

extrapolation of adsorption energies to an MAE of 0.23 eV. The proposed model also

worked well when applied to interpolation with no statistically significant difference

with the best models. The model has the potential to be applicable in other prob-

lems if the hyper-parameters of the model are adjusted according to the task. In the

current work, all species were chain structures and of size between C1 and C4. The

model was able to successfully extrapolate from larger to smaller species as long as the

target species had similar chemical fragments as those in the training set. However,

it should be noted that for distant extrapolation from small species to large species

such as enzymes and proteins, the relative number of atoms bonded to the surface

might be different and the model needs further refinement for such scenarios.
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Chapter 4

An Accelerated Metropolis-Hastings based on

Bayesian Optimization and Gaussian Process

Approximation

4.1 Introduction

Markov Chain Monte Carlo (MCMC) algorithms, widely applied in numerous fields of

science, engineering and statistics [65], use Markov chain to sample from a probabil-

ity distribution. In this paper we focus on the Metropolis-Hastings (MH) algorithm,

one of the premier algorithms under this class. MH Typically runs for a large number

of iterations where, for each iteration, a new point on the parameter space is pro-

posed using a proposal distribution; and the target function needs to be evaluated

for the proposed point, based on which the algorithm decides whether to move to the

proposed point or to stay in the same location. Thus, the target function needs to

be evaluated many times. For many physics based models, the forward simulations

are expensive and performing these for each iteration incur large computational cost

and becomes a performance bottleneck. Moreover, the initial samples of the Markov

chain usually follow a distribution that is different from the target, and have to be

discarded until the convergence to the target - termed as burn-in period - which is

wasteful. In this work, we propose an enhanced MH algorithm, named MHGP that

addresses these problems.
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Different approaches have been proposed to make MCMC faster [66] - using par-

allelization through multithreading [67] or distributed algorithm to achieve better

performance [68]; or reducing the computational cost of the accept/reject step by us-

ing smaller fraction of data [69]; using log-likelihood estimator to work with random

subset of the observations [70]; reducing dimensionality of the underlying computa-

tion model for efficient convergence [71]. These methods, while, trying to reduce the

cost of the target evaluation, do not actually reduce the number of times the target

is evaluated. Gaussian Process model has been proposed to off-load some of the com-

putational work in Hybrid Monte Carlo [72, 73]; approximation methods have been

proposed [74] where acceptance probabilities are calculated on a local approximation

and the actual target is only evaluated once the proposal has been accepted. How-

ever, it would still require large number of target evaluations once the chain reaches

high density region as more of the proposals are accepted there. Gaussian Process

approximation of the target distribution was used to decrease expensive function calls

[75]. But, as more numbers are added to the GP, the computational cost increases

as the time complexity for GP is O(N3). Methods such as sparse Gaussian process

[76] can be used to limit these computational overheads. To improve the proposal

distribution in MCMC, adaptive approach has been used [77, 78] where information

from simulation is utilized to adapt the proposal distribution. A multi-step proposal

distribution was proposed [79] which discusses an adjustable proposal to speed up

convergence. The adaptive approach has the limitation that for high dimensional

space the stationary distribution tends to be biased. Although there exist many

nonlinear low-dimensional models, this certainly reduces the domain of the set of

problems where this approach can be applied.

In this paper we propose an enhanced MH method. It uses Bayesian optimization

to speed up the burn-in process and quickly reach high density region. Next, contin-

uing with the GP obtained from the Bayesian optimization, Laplace approximation
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of the GP is taken around the peak to get the covariance matrix for an informed pro-

posal distribution; and then, guided by this proposal, sample-generating iterations

run as more training points are added to the GP, which continues to gain better ap-

proximation of the unnormalized target distribution. Due to positivity of probability

density functions (pdf), GP is used to approximate the log of the target pdf instead of

using it directly to the original pdf. The uncertainty measure of the GP predictions

provides the uncertainty for the acceptance rate, which is then used to decide whether

the objective function needs to be evaluated or it can be read from the GP approx-

imation - resulting in fewer forward simulations as the iterations progress. Local

Gaussian process [80, 81] was used to avoid expensive calculations involving cumula-

tive sampled points. The proposed algorithm was evaluated for different benchmark

problems, two of which are presented here. The obtained samples are compared with

those from plain MH and DRAM methods which reveal that samples from MHGP

have no statistically significant difference from the established methods but is able to

achieve that with far fewer target evaluations.

4.2 Methodology

4.2.1 Vanilla Metropolis-Hastings Algorithm

The pseudocode for the plain Metropolis-Hastings algorithm [82] is given in Algo-

rithm 1.

There are some points to note here. First, the target distribution p(x∗) has to

be computed N times. The iteration number N is usually quite large - in the range

of hundreds of thousands or millions. The quality of the generated sample improves

with the number of iterations. So for complex target distribution the value of N has

to be large. Each of these iterations requires the objective function to be evaluated.

Evaluating this involves the computation of the likelihood function, which, for large

data sets, such as physics-based model simulations, is computationally expensive [73].
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Algorithm 1 Plain Metropolis-Hastings algorithm
1: procedure Metropolis–Hastings
2: Initialize x(0)

3: for i = 0 to N - 1 do
4: Sample u ∼ U[0,1]
5: Sample x∗ ∼ q(x∗|x(i))
6: acceptanceRatio = p(x∗)q(x(i)|x∗)

p(x(i))q(x∗|x(i))
7: A(x(i), x∗) = min {1, acceptanceRatio}
8: if u < A(x(i), x∗) then
9: x(i+1) = x∗

10: else
11: x(i+1) = x(i)

12: end if
13: end for
14: end procedure

So it is desirable to keep the number of costly function evaluation to minimum while

still obtaining good quality sample set. Secondly, the proposal distribution used with

the plain MH algorithm does not reflect any knowledge obtained from the structure

of the distribution. A better proposal distribution is bound to propose samples from

more relevant regions and thus achieving better results. Lastly, although the Markov

chain eventually converges to the target distribution, the initial samples can follow

quite a different distribution, more so in the case of a starting point chosen in the

low density region of the function space. This requires a number of initial samples

to be thrown away, which is quite wasteful if each iteration has heavy computational

expense. Our proposed method, MHGP, addresses these issues.

4.2.2 Starting with Bayesian Optimization

MHGP starts with initiation of a Gaussian Process for Bayesian Optimization, which

is a sequential approach to optimize an objective function by balancing between ex-

ploitation and exploration, controlled by an acquisition function [83, 84]. The Gaus-

sian process provides uncertainty estimates on the parameter space. The regions of

high uncertainty or exploration, and the regions of high model estimate or exploita-
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tion, are balanced using the acquisition function. In our case, it enables MHGP to

reach the high density region of the target propability distribution with a handful

number of iterations.

4.2.3 An Informed Proposal Distribution

The optimized point and the GP provided by Bayesian optimization is used in the

next step to come up with an informed proposal distribution that captures and ap-

proximate shape of the target distribution. We calculate Hessian of the GP at the

mode of the distribution to apply Laplace approximation and thus obtain a multivari-

ate Gaussian distribution with mean at the optimized point and a covariance matrix

that we will use as the covariance of our proposal distribution for the following stages.

As Bayesian Optimization often requires only a few steps to reach the optimized

region, the Gaussian Process may not be good enough to approximate the target

distribution at the end of the first phase and the covariance of the proposal may

not be positive semi-definite. In order to get a better approximation, a random walk,

governed by some isotropic Gaussian proposal, is initiated starting from the optimized

point obtained in the first phase of the algorithm. New points are added to GP by

evaluating the objective function. The number of steps this needs to go on can be

pre-specified or can be adaptively controlled by checking the uncertainty in the GP

estimation on subsequent steps.

4.2.4 Sample Generation using Gaussian Process

Next, MHGP enters its sample generating iterations. At each iteration, a new point is

proposed centering at the current point with a covariance obtained from the previous

phase. If the GP prediction at the proposed point has high uncertainty, it needs

to be evaluated and added to the GP training set, otherwise it is read from GP. A

high-level pseudo-code of MHGP is presented in Algorithms 2 and 3.
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If x is the last sampled point and x∗ is the new proposed point that the proposal

distribution has given, the acceptance probability, a can be written as:

a = p(x∗)
p(x)

ln a = ln p(x∗)− ln p(x)

We build our GP on the log of the target pdf. So each of the values ln p(x∗|D) and

ln p(x|D) are Gaussian distributed. This means if we take the log of the acceptance

probability, it is the subtraction of two Gaussian which makes it Gaussian, too.

Thus we have: ln a ∼ N (µ, σ2).

This makes the probability of the acceptance rate a log-normal distribution: a ∼

lnN (µ, σ2).

As new points are evaluated for the target posterior distribution they are added

to the training set of the GP. Each time a new point x∗ is proposed from the proposal

distribution, we measure how certain our GP is about the acceptance probability

there. The measurement is done by computing
√
V ar[a]/E[a] and see if it is larger

than some threshold value. Based on the value of the computation being larger than

the threshold or not, we decide whether to read the p(x∗) from the GP or to evaluate

the target distribution.
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Algorithm 2 Proposed MHGP Method
1: procedure MHGP

2: Initialize x(0)

3: Run BayesOpt starting from x(0); it returns GP

4: Set proposal distribution Q to be the covariance obtained from Laplace ap-

proximation of GP

5: Set x(0) to be the optimized point

6: for i = 0 to N - 1 do

7: Sample u ∼ U[0,1]

8: Sample x∗ ∼ Q(x∗|x(i))

9: µ,Σ = getTargetValue(x∗, x(i))

10: acceptanceRatio = eµ
∗−µ+

σ2
xx+σ2

x∗x∗ −2σ2
xx∗

2

11: A(x(i), x∗) = min {1, acceptanceRatio}

12: if u < A(x(i), x∗) then

13: x(i+1) = x∗

14: else

15: x(i+1) = x(i)

16: end if

17: end for

18: end procedure
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Algorithm 3 Get Predicted or Evaluated Target Value
1: procedure getTargetValue(x∗, x(i))

2: µ,Σ = LocalGP (predict(x∗, x(i)))

3: if
√
eσ

2
xx+σ2

x∗x∗−2σ2
xx∗ − 1 > threshold then

4: if p(x) was evaluated then

5: Evaluate p(x∗)

6: add to GP training set

7: else

8: Evaluate p(x)

9: add to GP training set

10: if ratio still greater than threshold then

11: Evaluate p(x∗)

12: add to GP training set

13: else

14: get p(x∗) from LocalGP’s prediction

15: end if

16: end if

17: else

18: get p(x∗) from LocalGP’s prediction

19: end if

20: Return predicted or evaluated p(x∗)

21: end procedure

To calculate
√
V ar[a]/E[a] for the log-normal distribution, we use the standard

mean and variance formula for log-normal, which are eµ+σ2/2 and (eσ2 − 1)e2µ+σ2 ,

respectively. This gives us
√

eσ2 − 1 as our desired ratio. So we need to calculate the

value of σ2. For current point x and new proposed point x∗ the GP prediction gives

us the covariance matrix containing σ2
xx, σ

2
x∗x∗ , σ2

xx∗ where σ2
xx is the mean-squared
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error at point x, σ2
x∗x∗ is the mean-squared error at point x∗ and σ2

xx∗ is the covariance

between x and x∗. Since ln a was a subtraction of two Gaussian, the value of σ2 for

the log-normal will be σ2
xx + σ2

x∗x∗ − 2σ2
xx∗ . As the acceptance ratio in our case is a

log-normal random variable, we use its mean as the measure for the acceptance ratio.

The mean formula of eµ+σ2/2 for log-normal distribution gives eµ∗−µ+
σ2
xx+σ2

x∗x∗ −2σ2
xx∗

2 .

GP regression is a function approximation process that not only predicts the

function but also gives a measure of the uncertainty associated with the prediction

[85]. For each of the desired prediction points we get the mean prediction and also

the measure of how certain the algorithm is about its mean prediction. As more data

points are added to the training set, the GP model becomes more certain about the

structure of the function. It is more certain in the area where more training points

reside and less certain where there are few training points. GP can use any kernel

for the similarity measure provided that the kernel satisfies some condition [85]. Here

we have used the well known squared exponential (SE) kernel. To limit the time

required to train the GP on all the accepted points after each evaluation, we instead

used local Gaussian process before making a prediction that considered only the

points in the vicinity of the current and the proposed points. The covariance for the

proposal (obtained from Laplace approximation) was scaled down by a configurable

parameter.

4.2.5 Approximate Detailed Balance

MHGP is an approximate MCMC sampling technique since it uses the GP approxima-

tion of the target. So we cannot use the regular detailed balance property and prove

mathematically that the generated sample chain converges to the target. Instead we

use a new approximate detailed balance equation to show that MHGP converges to

the GP approximation of the target. This proof follows the proof of the property

for the standard MH [86]. The plain MH creates a Markov chain while generat-
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ing samples from p∗(x). The detailed balance property, which a chain satisfies if

p(x′|x)p∗(x) = p(x|x′)p∗(x′), is a sufficient condition for p∗ to be the stationary distri-

bution of the chain. MHGP generates samples from the GP-approximation f ∗(x) of

the original target distribution p∗(x). So the condition for the chain to satisfy detailed

balance property, after replacing the target distribution with the approximation and

rearranging, will be:

f ∗(x′)
f ∗(x) = p(x′|x)

p(x|x′)

MHGP algorithm deals with the mean of the ratio of f ∗(x′) and f ∗(x) as the

aspect ratio. So what we really want to show is the expected value of the ratio of

f ∗(x′) and f ∗(x) equals the right hand side of the last equation:

E

[
f ∗(x′)
f ∗(x)

]
= p(x′|x)
p(x|x′) (4.1)

The argument for this to work is that given enough training points the Gaussian

Process would converge to the target distribution and the uncertainty around the

mean would be lower. To prove the equation 4.1 let us define r(x′|x) to be the

probability of accepting x′ given that this point has been proposed when the chain

was at x; and α(x′|x) to be

α(x′|x) = f ∗(x′)q(x|x′)
f ∗(x)q(x′|x)

E [α(x′|x)] = E

[
f ∗(x′)
f ∗(x)

]
q(x|x′)
q(x′|x)

Assuming f ∗(x)q(x′|x) < f ∗(x′)q(x|x′) (proof for the opposite is symmetric), we

have r(x′|x) = E [α(x′|x)] and r(x|x′) = 1. The probability of going from current

point x to another point x′ is the probability of proposing that point times the

probability of accepting the proposed point:
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p(x′|x) = q(x′|x)r(x′|x)

= q(x′|x)E
[
f ∗(x′)
f ∗(x)

]
q(x|x′)
q(x′|x)

= E

[
f ∗(x′)
f ∗(x)

]
q(x|x′) (4.2)

The backward probability is given by p(x|x′) = q(x|x′)r(x|x′) = q(x|x′). Putting

this result in equation 4.2 and rearranging brings us to equation 4.1. Thus we can

say MHGP would converge to the mean of the GP.

4.3 Experimental Results

Figure 4.1: Random samples taken from the generated samples for both MHGP and
plain MH along with the actual banana distribution in the middle.

The comparison between the plain MH and the proposed MHGP was done using a

number of experiments, Three of which are presented here. The model for the first ex-

periment was the banana distribution. Both the algorithms were run 15000 iterations

to generate samples from the same banana distribution. For plain MH, each iteration

needs one target evaluation. MHGP, in contrast, needed less than 200 evaluations
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Figure 4.2: Comparison between time taken to reach high density region for plain MH
versus the Bayesian optimization phase of MHGP. Top: showing first 250 iterations
of plain MH for sampling banana distribution. Bottom: points explored by Bayesian
optimizer for the same problem.

during all these iterations with 50 additional evaluations during the Bayesian opti-

mization phase. 500 random samples generated by both the methods along with the

actual distribution, shown in Figure 4.1, illustrates that MHGP achieves very similar

results as MH but with far less computational cost. The performance gain from using

Bayesian Optimization is evident from Figure 4.2. Both the algorithms started far

from the high density region. The plot shows that plain MH required significantly

larger number of evaluations compared to the Bayesian optimizer in MHGP.
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Figure 4.3: Stacked view of results from plain Metropolis-Hastings and the proposed
MHGP. The green dotted lines show the actual values. The proposed model gives
similar result to the original one but with fewer calls to the target distribution. Plain
MH had 10,000 calls whereas MHGP had less than 300 calls to reach the same result.

The second example is a Lorenz system [87]. Starting with an initial condition

and parameters the system reaches some new location after some specified amount

of time. The model consists of three ordinary differential equations:

dx

dt
= s(y − x) , dy

dt
= x(p− z)− y , dz

dt
= xy − bz

where x, y, and z together are the system state, t is the time, and s, p, and b are

the system parameters. Our goal is to infer the initial location based on the data for

the final location using prior and likelihood. We can model the system like this:
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Figure 4.4: Samples along each dimension of the kinetics example. Left: samples
generated by MCMC DRAM and Right: samples from MHGP. For both sides, the
six plots read from left to right and top to bottom are for the first reaction rate,
first activation energy, second reaction rate, second activation energy, and A’s initial
concentration for the first and second batch, respectively.
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where Lt stands for the Lorenz system running for time t; xf , yf , zf make up

the initial coordinate; xf , yf , zf make up the final coordinate after the system is

run for time t. The εx, εy, and εz are the error measures with each of them being

normally distributed with zero mean and some variance which, in our experiment,

was 0.01. We specify some prior which contains our prior knowledge of the initial

location, if any. The likelihood measures the likelihood of the value of the final

location given the starting location. We sample from the posterior distribution which

we get from the prior and the likelihood. We do this for both the plain MH algorithm

and our proposed enhanced MHGP algorithm. The results from both the algorithms

showed similarity but with fewer number of calls to the target distribution in the

enhanced algorithm (Figure 4.3). The figure has nine plots. The diagonal plots

show the comparison of the samples between plain MH and the MHGP along each
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of the axes using histograms. The non-diagonal plots contain scatter plots showing

the pairwise correlation among the samples for each of the axes. Plots in the upper

triangle are from the MHGP, plots from the lower triangle (each of which has its

symmetric counterpart in the upper triangle) are from the plain MH. As this is a

very chaotic system, the samples for both the algorithms are somewhat off-target but

again they show the similar trend. And again the important point is the fact that

MHGP required much less than one-tenth of the function evaluation required by plain

MH to achieve very similar result.

The Model for the third example was more complex real world ODE system

problem of chemical kinetics. Here, a two step reaction A −−→ B −−→ C was

considered with temperature dependent reaction rates. The dataset consists of two

batches of data for two temperature settings where both the batches contain the

relative concentrations of A and B over different time steps. There are six unknowns

in the model: two reaction rate parameters, two activation energies, and for both

the batches - the initial concentration of A. The priors for all the unknowns were

set to be uniformly distributed in the acceptable range of values. The likelihood

function measures the likelihood of the observed concentrations of A and B given the

model prediction. For both MHGP and MCMC DRAM, 500 random samples out

of the accepted samples along each of the six dimensions (unknowns) are shown in

Figure 4.4. The plots at the top row show the distribution of samples for the reaction

rate parameter and the activation energy for the first reaction, the middle row shows

these parameters for the second reaction, and the bottom row presents the initial

concentrations of A for both the batches.

The samples from MHGP again has similar distribution to that of the established

method. We performed statistical test based on the energy distance [88] measures

between the two sets of samples generated by the two methods to find if the samples

indeed come from the same distribution. The energy distance test works by first
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obtaining pooled samples from both sets and calculate their energy distance εn. Then

resample from these pooled samples some number of times, calculating the energy

distance εm each time. For a desired significance level α, the null hypothesis is

rejected if εn exceeds 1 − α of εms. No statistically significant difference was found

between the two sets with p-value of 0.12 for the kinetics example, 0.15 for the banana

distribution, and 0.16 for the Lorenz system. Note, here the null hypothesis is that

there is no statistically significant difference between the two sets of samples and

hence, high p-values mean that the energy distance test did not find any significant

difference between the samples obtained from MHGP and existing methods.

The fact that MHGP, driven by the uncertainty measurement from Gaussian

process, requires less and less target evaluation as the algorithm advances through

the iterations, can be observed in Figure 4.5. GP starts with high uncertainty and

many of the initially proposed points need to be evaluated. But gradually it gains

a better approximation of the target and very few evaluations are needed in later

stages.

Figure 4.5: Target evaluations of MHGP.
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4.4 Conclusion

The key challenge in this work was to reduce the number of costly evaluations while

ensuring efficient convergence to the target distribution. As our experiments and

corresponding comparative study have indicated, MHGP offers an efficient alternative

to the plain Metropolis-Hastings. It has short burn-in period with the help of Bayesian

optimization, an informed proposal distribution using Laplace approximation, and

fewer target evaluations due to Gaussian process with quantified uncertainty. The

method is based on the Metropolis-Hastings algorithm and hence, will face the same

challenges as the original algorithm when faced with multi-modal distributions, for

example. Moreover, as Gaussian process is used to approximate the target, the

limitations of GP [89] on handling very high dimensional data can affect the method.

Making GP to better handle this kind of scenario is an active research area [90, 91, 92].

Also, since the method is based on a GP approximation of the target, adherence to the

detailed balance property cannot be established. Nevertheless, we believe the method

can have significant practical value for different areas of science and engineering where

forward simulations are expensive.
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Chapter 5

Conclusion

Computational catalysis is an active research area with huge economic and envi-

ronmental impact. In the current work, we have investigated, formulated and pro-

posed improvements to the catalyst discovery workflow using machine learning. We

have identified key bottlenecks in the conventional process of computational catalyst

screening and tried to improve upon those. The regular process involves computation

of complete database containing the adsorption and transition state energies for all

intermediate species on different surfaces; then using these to identify dominant cat-

alytic cycles, rate controlling steps and key reaction intermediates; which in turn are

used to develop microkinetic models and perform the forward problem of predicting

uncertainties for quantities-of-interests such as turnover frequency; and finally, these

uncertainties are refined by Bayesian inverse problem using the experimental mea-

surements on QoIs. Our work has focused on reducing the computation of adsorption

energies and accelerating the MCMC method used in inverse problems.

In order to reduce the number of expensive density functional theory (DFT) cal-

culations, we have built a predictive framework for adsorption energies. Our initial

investigation focused on comparing non-linear machine learning models with linear

scaling. We found that linear scaling works well when predicting energies for species

on some metal surface given energies for those species on other metal surfaces. Our

studies showed that appropriate choice of metal descriptors was important in this

case. To do this, we proposed an automatic discovery process for metal descriptors.

We also found that when our model used an incomplete energy dataset for training,

65



www.manaraa.com

species descriptors need to be included and advanced ML models outperform linear

models in this case. This study has been published in Ref. [7]. Next, we investigated

the case when we have data for a set of species for one metal surface and the goal is

to predict energies for other species on the same surface. In this case, learning is done

solely based on the species descriptor. Also, we wished to extrapolate on adsorption

energies - when training set contains small species and test set contains larger species

and vice versa. Our experiments suggested that regular machine learning models did

not achieve satisfactory results for this type of prediction. We developed a novel mul-

tiple filter based neural network model that has been shown to outperform traditional

models for extrapolation of adsorption energies. This work has also been published

in Ref. [8].

To accelerate the Bayesian inverse problem, that is refining the uncertainties of

the quantities-of-interests based on experimental measurements, we have proposed an

improved Metropolis-Hastings MCMC algorithm that reduces the number of forward

simulations containing expensive likelihood function calculations by using an approx-

imate model of the target function using Gaussian process. We compared our method

with standard MH for several simple models and this initial work had been published

in a conference proceedings [75]. The work has since been enhanced. It focuses on

reducing the burn-in period using Bayesian optimization and introduces a new and

improved proposal distribution that uses Laplace approximation through the Hessian

of the Gausian process. The method has been tested on larger, real world problems

and the experiments indicate that it is able to achieve similar quality of samples as

the original method, but with far fewer target evaluations.
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Appendix A

Supporting Information for Prediction of

Adsorption Energies

A.1 Energy Data

The energy data are prepared to have the same reference values. For example, the

adsorption energy for an intermediate surface species CxHyOz was calculated as:

ECxHyOz = EDFT
CxHyOz − E

DFT
∗ − xEC − yEH − zEO

where

EC = EDFT
CH4(g) − 2EDFT

H2(g)

EH = 1
2E

DFT
H2(g)

EO = EDFT
H2O(g) − EDFT

H2(g)

Here, EDFT
∗ is the energy of the free site (clean slab) and EDFT

X denotes the adsorption

energy of the species X from the DFT calculations. Here, all our data were obtained

by running DFT calculations on a Pt(111) surface.

For Chapter 2, the energies for each species on each metal surface are shown in

table format in Table A.1.

For Chapter 3, our data set is divided into two groups: 247 4C molecules contain-

ing 4 carbon atoms along with a variable number of oxygen and hydrogen atoms; and

29 2C and 3C molecules containing either 2 or 3 carbon atoms along with a variable

number of oxygen and hydrogen atoms. All the interpolation predictions were done
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Table A.1: All the referenced energies (for each metal and each species) in table
format with values in eV.

Species Pd Pt Rh Re Ru Cu Ag Ni

CH3CH2COOH 2.971 3.097 2.722 2.591 2.540 2.974 3.149 3.031
CH3CHCOOH 3.586 3.488 3.422 3.306 3.046 3.940 4.268 3.596
CH3CCOOH 4.272 4.049 3.684 3.335 3.310 4.781 5.643 4.061
CH2CHCOOH 3.948 3.821 3.813 3.236 3.295 4.550 4.648 3.869
CHCHCOOH 4.745 4.403 4.166 3.526 3.696 5.255 5.955 4.439
CH3CH2CO 2.860 2.862 2.729 2.768 2.590 3.753 4.133 2.984
CH3CHCO 3.607 3.220 3.270 3.143 3.007 4.593 4.686 3.669
CH3CCO 3.962 3.586 3.644 3.077 3.364 5.001 5.462 3.857
CH2CHCO 4.029 3.864 3.618 3.141 3.355 5.302 5.777 4.114
CHCHCO 4.804 4.337 4.260 3.475 3.641 5.935 6.828 4.656
CHCH 2.671 2.346 2.167 1.309 1.809 3.372 4.789 2.120
CH2C 2.536 2.084 2.089 1.943 1.807 3.686 4.696 2.473
CH2CH 2.273 1.827 2.049 1.671 1.642 3.117 3.664 2.296
CH2CH2 1.472 1.245 1.452 1.210 1.309 2.171 2.302 1.615
CH3CH2COO 3.275 3.308 2.735 2.202 2.286 2.924 3.364 2.721
CH3CHCOO 4.423 4.433 3.738 3.263 3.119 4.460 5.140 4.061
CH3CCOO 5.121 4.873 4.516 4.209 4.140 5.705 6.862 4.895
CH3C 1.568 1.221 1.286 1.309 1.234 3.163 4.492 1.641
CH3CH 1.795 1.523 1.519 1.342 1.284 2.727 3.591 1.678
CH3CH2 1.230 0.986 1.251 1.022 1.140 1.853 2.146 1.362
CH3CH3 0.548 0.558 0.562 0.581 0.575 0.574 0.577 0.574
OH 0.612 0.809 0.189 -0.585 -0.320 0.043 0.572 -0.173
H2O -0.287 -0.274 -0.368 -0.466 -0.484 -0.210 -0.166 -0.311
CO 1.086 1.272 1.118 1.244 1.162 2.188 2.879 1.177
CO2 2.354 2.362 2.447 2.136 2.253 2.362 2.362 2.407
COOH 2.203 2.043 1.822 1.754 1.659 2.636 3.100 2.075
O 1.151 1.293 0.566 -0.492 0.023 0.852 2.175 -0.637
C 2.134 1.842 1.767 1.658 1.446 4.106 5.624 2.329
H -0.599 -0.507 -0.543 -0.756 -0.630 -0.267 0.148 -0.553

inside the 4C molecules data and the extrapolation were done by training on 4C and

testing on 2C and 3C. The following two tables contain the data for 2C/3C and 4C,

respectively. In both tables, the first column contains the chemical formula or some

unique id for the corresponding species, the second column contains the SMILES no-

tation for the species and the third column contains the referenced adsorption energy

of the species.
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Table A.2: Energies with the SMILES notation for all the 2C
and 3C species.

Species SMILES Energy (eV)

CH2CH [CH2][CH] 1.548
CH2CH2 [CH2][CH2] 0.917
CH2CHCO [CH2][CH][C](=O) 3.442
CH2CHCOOH [CH2][CH]C(=O)O 3.233
CH3CCO C[C][C](=O) 3.145
CH3CCOO C[C]C(=O)[O] 4.339
CH3CCOOH C[C]C(=O)O 3.543
CH3CH C[CH] 1.250
CH3CH2 C[CH2] 0.655
CH3CH2CO CC[C](=O) 2.488
CH3CH2COO CCC(=O)[O] 3.004
CH3CH2COOH CCC(=O)O 2.713
CH3CH3 CC 0.314
CH3CHCO C[CH][C](=O) 2.719
CH3CHCOO C[CH]C(=O)[O] 3.883
CH3CHCOOH C[CH]C(=O)O 2.904
CHCH [CH][CH] 2.121
CHCHCO [CH][CH][C](=O) 3.893
CHCHCOOH [CH][CH]C(=O)O 3.893
CH3CH2CH2O CCC[O] 2.377
CH3CH2CH2OH CCCO 1.275
CH3CH2CHO CCC(=O) 2.532
CH3CH2CHOH CC[CH]O 1.524
CH3CH2COH CC[C]O 1.657
CH3CHCH2O C[CH]C[O] 2.650
CH3CHCH2OH C[CH]CO 1.676
CH3CHCHO C[CH]C(=O) 2.707
CH3CHCHOH C[CH][CH]O 1.808
CH3CHCOH C[CH][C]O 2.015

Table A.3: Energy (in eV) with the SMILES notation for all the 4C species

Species SMILES Energy (eV)

COOHCH2CH2COOH OC(=O)CCC(=O)O 4.866

Continued on next page
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Table A.3 – Continued from the previous page

Species SMILES Energy (eV)

COHCH2CH2CHO C(=O)CC[C](O) 4.472

CH2OHCCH2COOH OC[C]CC(=O)O 5.154

CH2OHCH2CCOOH OCC[C]C(=O)O 5.174

COHCHCHCHO C(=O)[CH][CH][C](O) 5.263

COHCHCHCOH O[C][CH][CH][C](O) 4.950

CHOCHCHCHO C(=O)[CH][CH]C(=O) 5.760

CH2OHCHCHCOOH OC[CH][CH]C(=O)O 4.773

CH2OHCHCH2CO [C](=O)C[CH]C(O) 4.188

CHOHCHCH2CHO C(=O)C[CH][CH](O) 4.663

CHOHCHCH2COH O[CH][CH]C[C](O) 3.985

COHCH2CH2COH O[C]CC[C](O) 3.876

CHOHCH2CHCOH O[CH]C[CH][C](O) 4.238

CHOHCH2CHCHO C(=O)[CH]C[CH](O) 4.526

CH2OHCH2CHCO [C](=O)[CH]CC(O) 4.149

COHCHCH2COOH O[C][CH]CC(=O)O 4.766

CHOHCH2CHCOOH O[CH]C[CH]C(=O)O 4.470

COHCCCO [C](=O)[C][C][C](O) 7.214

CHOCCCO C(=O)[C][C][C](=O) 7.079

CHOHCCHCO [C](=O)[CH][C][CH](O) 5.382

COHCCHCOH O[C][C][CH][C](O) 5.421

COHCCHCHO C(=O)[CH][C][C](O) 5.967

CHOCH2CH2CHO C(=O)CCC(=O) 5.306

CHOCCHCHO C(=O)[C][CH]C(=O) 6.269

Continued on next page
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Table A.3 – Continued from the previous page

Species SMILES Energy (eV)

COHCHCCHO C(=O)[C][CH][C](O) 5.823

CHOHCHCCO [C](=O)[C][CH][CH](O) 5.409

CHOHCCCOOH O[CH][C][C]C(=O)O 6.343

CH2OHCCHCOOH OC[C][CH]C(=O)O 5.204

CH2OHCHCCOOH OC[CH][C]C(=O)O 5.204

CH2OHCCH2CO [C](=O)C[C]C(O) 4.746

CHOHCCH2COH O[CH][C]C[C](O) 4.540

CHOHCCH2CHO C(=O)C[C][CH](O) 5.446

CHOHCH2CCOH O[CH]C[C][C](O) 4.487

CH2OHCH2CH2COOH OCCCC(=O)O 4.010

CHOHCH2CCHO C(=O)[C]C[CH](O) 5.070

CH2OHCH2CCO [C](=O)[C]CC(O) 4.721

CH2OHCHCHCO [C](=O)[CH][CH]C(O) 4.534

CHOHCHCHCHO C(=O)[CH][CH][CH](O) 4.934

CHOHCHCHCOH O[CH][CH][CH][C](O) 4.458

CH2OHCHCH2CHO C(=O)C[CH]C(O) 4.625

CH2OHCHCH2COH OC[CH]C[C](O) 3.778

CHOHCH2CHCHOH O[CH][CH]C[CH](O) 3.750

CH2OHCH2CHCOH OCC[CH][C](O) 3.730

CH2OHCH2CHCHO C(=O)[CH]CC(O) 4.483

CH2OHCH2CH2CO [C](=O)CCC(O) 3.790

CH2OHCHCH2COOH OC[CH]CC(=O)O 4.423

CH2OHCH2CHCOOH OCC[CH]C(=O)O 4.490

Continued on next page
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Table A.3 – Continued from the previous page

Species SMILES Energy (eV)

CHOHCCCO [C](=O)[C][C][CH](O) 6.628

COHCHCCO [C](=O)[C][CH][C](O) 5.670

COHCCCOH O[C][C][C][C](O) 7.062

COHCCCHO C(=O)[C][C][C](O) 6.950

CHOCCCHO C(=O)[C][C]C(=O) 6.934

CH2OHCCHCO [C](=O)[CH][C]C(O) 5.158

CHOHCCHCOH O[CH][C][CH][C](O) 5.048

CHOHCCHCHO C(=O)[CH][C][CH](O) 5.937

CHOHCH2CH2COH O[CH]CC[C](O) 3.600

CHOHCHCCOH O[CH][CH][C][C](O) 5.294

CHOHCHCCHO C(=O)[C][CH][CH](O) 5.544

CH2OHCHCCO [C](=O)[C][CH]C(O) 5.326

CH2OHCCCOOH OC[C][C]C(=O)O 5.760

CH2OHCCH2CHO C(=O)C[C]C(O) 5.297

CH2OHCCH2COH OC[C]C[C](O) 4.353

CHOHCCH2CHOH O[CH][C]C[CH](O) 4.277

CH2OHCH2CCOH OCC[C][C](O) 4.399

CH2OHCH2CCHO C(=O)[C]CC(O) 4.979

CH2OHCHCHCOH OC[CH][CH][C](O) 4.289

CHOHCH2CH2CHO C(=O)CC[CH](O) 4.403

CH2OHCHCHCHO C(=O)[CH][CH]C(O) 4.731

CHOHCHCHCHOH O[CH][CH][CH][CH](O) 3.987

CH2OHCHCH2CHOH OC[CH]C[CH](O) 3.455

Continued on next page
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Table A.3 – Continued from the previous page

Species SMILES Energy (eV)

CH2OHCH2CHCHOH OCC[CH][CH](O) 3.650

CH2OHCHCH2CO [C](=O)C[CH]C(O) 4.062

CH2OHCH2CHCO [C](=O)[CH]CC(O) 4.242

CH2OHCCCO [C](=O)[C][C]C(O) 5.867

CHOHCCCOH O[CH][C][C][C](O) 6.490

CHOHCCCHO C(=O)[C][C][CH](O) 6.420

CH2OHCCHCOH OC[C][CH][C](O) 4.947

CH2OHCH2CH2COH OCCC[C](O) 3.356

CH2OHCCHCHO C(=O)[CH][C]C(O) 5.259

CHOHCHCCHOH O[CH][C][CH][CH](O) 4.677

CH2OHCHCCOH OC[CH][C][C](O) 4.949

CH2OHCHCCHO C(=O)[C][CH]C(O) 5.134

CH2OHCCH2CHOH OC[C]C[CH](O) 4.177

CH2OHCH2CCHOH OCC[C][CH](O) 4.134

CH2OHCHCHCHOH OC[CH][CH][CH](O) 3.902

CH2OHCH2CHCH2OH OC[CH]CC(O) 3.455

CH2OHCCCOH OC[C][C][C](O) 5.737

CH2OHCCCHO C(=O)[C][C]C(O) 5.738

CH2OHCH2CH2CHO C(=O)CCC(O) 4.176

CHOHCCCHOH O[CH][C][C][CH](O) 5.757

CH2OHCCHCHOH OC[C][CH][CH](O) 4.551

CH2OHCHCCHOH OC[CH][C][CH](O) 4.784

CH2OHCH2CCH2OH OC[C]CC(O) 4.204

Continued on next page
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Table A.3 – Continued from the previous page

Species SMILES Energy (eV)

CH2OHCHCHCH2OH OC[CH][CH]C(O) 3.907

CH2OHCCCHOH OC[C][C][CH](O) 5.144

CH2OHCHCCH2OH OC[C][CH]C(O) 4.198

CH2OHCCCH2OH OC[C][C]C(O) 4.601

CHOHCH2CH2CHOH O[CH]CC[CH](O) 3.436

COCH2CH2COOH [C](=O)CCC(=O)O 4.755

CH2OHCH2CH2CHOH OCCC[CH](O) 3.271

CH2OHCH2CH2CH2OH OCCCC(O) 2.866

COOHCHCH2COOH OC(=O)[CH]CC(=O)O 5.405

COOHCCH2COOH OC(=O)[C]CC(=O)O 6.266

COOHCHCHCOOH OC(=O)[CH][CH]C(=O)O 5.806

COCHCH2COOH [C](=O)[CH]CC(=O)O 5.209

COCH2CHCOOH [C](=O)C[CH]C(=O)O 5.075

COOHCCHCOOH OC(=O)[C][CH]C(=O)O 6.222

COCCH2COOH [C](=O)[C]CC(=O)O 5.766

COCH2CCOOH [C](=O)C[C]C(=O)O 5.670

COCH2CH2CO [C](=O)CC[C](=O) 4.602

COCHCHCOOH [C](=O)[CH][CH]C(=O)O 5.555

COCHCH2CO [C](=O)[CH]C[C](=O) 4.961

COHCHCH2COOH O[C][CH]CC(=O)O 4.758

CHOCHCH2COOH C(=O)[CH]CC(=O)O 5.693

COHCH2CHCOOH O[C]C[CH]C(=O)O 4.755

CHOCH2CHCOOH C(=O)C[CH]C(=O)O 5.459

Continued on next page
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Table A.3 – Continued from the previous page

Species SMILES Energy (eV)

COCCHCOOH [C](=O)[C][CH]C(=O)O 6.436

COCHCCOOH [C](=O)[CH][C]C(=O)O 6.227

COOHCCCOOH OC(=O)[C][C]C(=O)O 7.073

COCCH2CO [C](=O)[C]C[C](=O) 5.335

COHCH2CH2COOH O[C]CCC(=O)O 4.367

COHCCH2COOH O[C][C]CC(=O)O 5.435

CHOCCH2COOH C(=O)[C]CC(=O)O 6.024

COHCH2CCOOH O[C]C[C]C(=O)O 5.379

CHOCH2CCOOH C(=O)C[C]C(=O)O 6.328

COCHCHCO [C](=O)[CH][CH][C](=O) 5.479

COHCHCHCOOH O[C][CH][CH]C(=O)O 5.277

CHOCHCHCOOH C(=O)[CH][CH]C(=O)O 5.679

COHCHCH2CO [C](=O)C[CH][C](O) 4.430

COCH2CH2CO [C](=O)CC[C](=O) 4.585

CHOCHCH2CO C(=O)[CH]C[C](=O) 5.106

CHOCH2CH2COOH C(=O)CCC(=O)O 5.120

COCHCH2COH [C](=O)[CH]C[C](O) 4.433

COCHCH2CHO C(=O)C[CH][C](=O) 5.417

CHOHCHCH2COOH O[CH][CH]CC(=O)O 4.524

CHOHCH2CHCOOH O[CH]C[CH]C(=O)O 4.470

COCCHCO [C](=O)[C][CH][C](=O) 6.641

COCCCOOH [C](=O)[C][C]C(=O)O 7.121

COHCCHCOOH O[C][C][CH]C(=O)O 6.250

Continued on next page
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Table A.3 – Continued from the previous page

Species SMILES Energy (eV)

CHOCCHCOOH C(=O)[C][CH]C(=O)O 6.223

COHCHCCOOH O[C][CH][C]C(=O)O 5.906

CHOCHCCOOH C(=O)[CH][C]C(=O)O 6.288

COCH2CH2COH [C](=O)CC[C](O) 4.216

COHCCH2CO [C](=O)C[C][C](O) 5.000

CHOCCH2CO C(=O)[C]C[C](=O) 5.607

COCCH2COH [C](=O)[C]C[C](O) 5.081

COCCH2CHO C(=O)C[C][C](=O) 5.845

COCH2CHCO [C](=O)[CH]C[C](=O) 4.943

CHOHCCH2COOH O[CH][C]CC(=O)O 5.240

CHOHCH2CCOOH O[CH]C[C]C(=O)O 5.197

COHCHCHCO [C](=O)[CH][CH][C](O) 5.178

CHOCHCHCO C(=O)[CH][CH][C](=O) 5.655

COCH2CHCO [C](=O)[CH]C[C](=O) 4.822

COCH2CH2CHO C(=O)CC[C](=O) 4.964

CHOHCHCHCOOH O[CH][CH][CH]C(=O)O 4.876

CHOHCHCH2CO [C](=O)C[CH][CH](O) 4.265

COHCH2CH2CO [C](=O)CC[C](O) 4.218

COHCHCH2COH O[C][CH]C[C](O) 4.086

COHCH2CHCOH O[C][CH]C[C](O) 4.967

CHOCH2CH2CO C(=O)CC[C](=O) 4.978

CHOCHCH2COH C(=O)[CH]C[C](O) 4.777

CHOCHCH2CHO C(=O)[CH]CC(=O) 5.685

Continued on next page
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Table A.3 – Continued from the previous page

Species SMILES Energy (eV)

CHOHCH2CHCO [C](=O)[CH]C[CH](O) 4.392

CH2OHCHCH2COOH OC[CH]CC(=O)O 4.470

CHOHCH2CH2COOH O[CH]CCC(=O)O 4.192

CHOHCH2CHCOOH O[CH]C[CH]C(=O)O 4.179

CHOHCCH2COOH O[CH][C]CC(=O)O 5.298

CHOHCH2CCOOH O[CH]C[C]C(=O)O 5.196

CH2OHCH2CHCOOH OCC[CH]C(=O)O 4.397

COCCCO [C](=O)[C][C][C](=O) 7.482

COHCCHCO [C](=O)[CH][C][C](O) 5.914

CHOCCHCO C(=O)[C][CH][C](=O) 6.193

CHOCHCCO C(=O)[CH][C][C](=O) 6.447

COHCHCCO [C](=O)[C][CH][C](O) 5.659

COHCCCOOH O[C][C][C]C(=O)O 6.988

CHOHCH2CH2CO [C](=O)CC[CH](O) 3.978

CHOCCCOOH C(=O)[C][C]C(=O)O 6.939

CHOHCCHCOOH O[CH][C][CH]C(=O)O 5.864

CHOHCHCCOOH O[CH][CH][C]C(=O)O 5.579

CHOHCCH2CO [C](=O)C[C][CH](O) 5.586

COHCH2CCOH O[C][C]C[C](O) 4.783

COHCCH2CHO C(=O)C[C][C](O) 5.550

COHCH2CCHO C(=O)[C]C[C](O) 5.306

CHOHCH2CCO [C](=O)[C]C[CH](O) 4.782

COHCH2CCHO C(=O)[C]C[C](O) 5.304

Continued on next page
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Table A.3 – Continued from the previous page

Species SMILES Energy (eV)

CHOCH2CCHO C(=O)[C]CC(=O) 6.463

C(OH)2CH2CH2COOH O[C](O)CCC(=O)O 4.645

C(OH)2CH2CH2CO O[C](O)CC[C](=O) 4.403

C(OH)2CH2CH2C(OH)2 O[C](O)CC[C](O)O 4.310

C(OH)2CH2CH2COH O[C](O)CC[C]O 4.018

C(OH)2CH2CH2CHO O[C](O)CCC(=O) 3.971

C(OH)2CH2CH2CHOH O[C](O)CC[CH]O 3.875

C(OH)2CH2CH2CH2OH O[C](O)CCCO 3.685

DCX_IM1 [O]C(=O)CCC(=O) 5.785

DCX_IM10 [O]C(=O)C[CH][CH](O) 5.743

DCX_IM11 [O]C(=O)C[CH][C](=O) 6.486

DCX_IM12 [O]C(=O)C[CH][C](O) 5.818

DCX_IM13 [O]C(=O)C[C]C(=O) 6.999

DCX_IM14 [O]C(=O)C[C]C(=O)O 6.682

DCX_IM15 [O]C(=O)C[C]C(O) 6.084

DCX_IM16 [O]C(=O)C[C][CH](O) 6.314

DCX_IM17 [O]C(=O)C[C][C](=O) 6.861

DCX_IM18 [O]C(=O)C[C][C](O) 6.411

DCX_IM19 [O]C(=O)[CH]CC(=O) 6.261

DCX_IM2 [O]C(=O)CCC(=O)O 5.661

DCX_IM20 [O]C(=O)[CH]CC(=O)O 6.235

DCX_IM21 [O]C(=O)[CH]CC(O) 5.288

DCX_IM22 [O]C(=O)[CH]C[CH](O) 5.450

Continued on next page
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Table A.3 – Continued from the previous page

Species SMILES Energy (eV)

DCX_IM23 [O]C(=O)[CH]C[C](=O) 6.109

DCX_IM24 [O]C(=O)[CH]C[C](O) 5.681

DCX_IM25 [O]C(=O)[CH][CH]C(=O) 6.693

DCX_IM26 [O]C(=O)[CH][CH]C(=O)O 6.580

DCX_IM27 [O]C(=O)[CH][CH]C(O) 5.806

DCX_IM28 [O]C(=O)[CH][CH][CH](O) 5.762

DCX_IM29 [O]C(=O)[CH][CH][C](=O) 6.572

DCX_IM3 [O]C(=O)CCC(O) 4.469

DCX_IM30 [O]C(=O)[CH][CH][C](O) 6.200

DCX_IM31 [O]C(=O)[CH][C]C(=O) 7.044

DCX_IM32 [O]C(=O)[CH][C]C(=O)O 7.359

DCX_IM33 [O]C(=O)[CH][C]C(O) 5.981

DCX_IM34 [O]C(=O)[CH][C][CH](O) 6.740

DCX_IM35 [O]C(=O)[CH][C][C](=O) 7.428

DCX_IM36 [O]C(=O)[CH][C][C](O) 6.922

DCX_IM37 [O]C(=O)[C]CC(=O) 6.946

DCX_IM38 [O]C(=O)[C]CC(=O)O 6.900

DCX_IM39 [O]C(=O)[C]CC(O) 5.833

DCX_IM4 [O]C(=O)CC[CH](O) 5.377

DCX_IM40 [O]C(=O)[C]C[CH](O) 5.978

DCX_IM41 [O]C(=O)[C]C[C](=O) 6.495

DCX_IM42 [O]C(=O)[C]C[C](O) 6.046

DCX_IM43 [O]C(=O)[C][CH]C(=O) 7.251

Continued on next page
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Table A.3 – Continued from the previous page

Species SMILES Energy (eV)

DCX_IM44 [O]C(=O)[C][CH]C(=O)O 6.987

DCX_IM45 [O]C(=O)[C][CH]C(O) 6.146

DCX_IM46 [O]C(=O)[C][CH][CH](O) 6.418

DCX_IM47 [O]C(=O)[C][CH][C](=O) 7.219

DCX_IM48 [O]C(=O)[C][CH][C](O) 6.780

DCX_IM49 [O]C(=O)[C][C]C(=O) 7.618

DCX_IM5 [O]C(=O)CC[C](=O) 5.898

DCX_IM50 [O]C(=O)[C][C]C(=O)O 7.730

DCX_IM51 [O]C(=O)[C][C]C(O) 6.452

DCX_IM52 [O]C(=O)[C][C][CH](O) 7.459

DCX_IM53 [O]C(=O)[C][C][C](=O) 8.571

DCX_IM54 [O]C(=O)[C][C][C](O) 7.737

DCX_IM6 [O]C(=O)CC[C](O) 5.448

DCX_IM7 [O]C(=O)C[CH]C(=O) 6.486

DCX_IM8 [O]C(=O)C[CH]C(=O)O 6.463

DCX_IM9 [O]C(=O)C[CH]C(O) 5.446

A.2 Descriptor or Feature data and their Calculations

A.2.1 Coulomb Matrix and Bag-of-Bonds

The diagonal entries in the Coulomb matrix are given by

C(i, i) = 0.5 ∗ Z2.4
i
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where Z represents the atomic number. The off-diagonal (i,j)-th entry of the Coulomb

matrix is given by

C(i, j) = Zi ∗ Zj
r

where r represents the distance between the atoms in Angstrom. The sorted eigen-

values of the matrix are then used as the descriptor. The bag-of-bond method works

with only the off-diagonal elements of the Coulomb matrix by placing the entries for

each pair of atoms inside a bag and thus building a long vector.

There are 18 sorted eigenvalues for the Coulomb matrix obtained for each species.

The Coulomb matrix is 18-by-18 since in our dataset (4C or 2C/3C) the maximum

numbers of carbon, oxygen and hydrogen atoms in a species are 4, 4 and 10, respec-

tively; which makes maximum possible molecular size for our database 18.

For bag-of-bonds, there are 108 long vectors for each species. Since, BoB deals

with the lower (or upper) triangle of the Coulomb matrix (excluding the diagonal

entries), for 18-by-18 matrix, there are 18∗(18−1)
2 or 153 entries. But, we do not

consider the entries corresponding to hydrogen-hydrogen which accounts for 10∗(10−1)
2

or 45 entries. Subtracting 45 from 153 gives 108.

A.2.2 Extended Connectivity Fingerprints

To generate fingerprints based on extended connectivity, we have used the open source

cheminformatics software ‘RDKit’. From there, the API for ‘Morgan fingerprint’

was used with default radius value 2 (see https://www.rdkit.org/docs/Cookbook.

html) which is roughly equivalent to ECFP4 (see https://www.rdkit.org/docs/

GettingStartedInPython.html). We tried with different number of bits and found

the results to get better as the number of bits was increased. However, after 1000

bits, there was no significant improvement on our dataset, and hence, we have used

1000 bits.
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A.2.3 Flat Molecular Fingerprints from SMILES

This is our hand-coded fingerprints based SMILES. The details of the fingerprint is

discussed in Figure 3.2.

A.2.4 Atomic Fingerprints from Coordinates

For each atom, we used a 5-length vector as its atomic fingerprint based on the

atomic coordinates. First four of these are based on pairwise distance measures (for

each atom, the pairwise distance measures to all the carbons, hydrogens, oxygens, and

metal atoms make these four values) and the last value comes from the triplet distance

measures from the current atom to all other atom pairs. Since, coordinate data

obtained from DFT calculations contain coordinates of the metal catalyst surface, we

have included the top two layers of metal atom in our calculation of these fingerprints.

The pairwise measure for the i-th atom, Pi is obtained using the following equa-

tion:

Pi =
∑
j

e−R
2
ij .fc(Rij)

where the summation, in our case, is over all atoms of an atom type; Rij is the

distance between atom i and j; and fc(Rij) is given by:

fc(Rij) =


0.5[cos πRij

Rc
+ 1] forRij < Rc

0 forRij > Rc

where Rc is the cut-off radius. We used 4 angstrom for this value.

The triplet distance measure for the i-th atom, Ti is obtained using the following

equation:

Pi =
all∑
j,k 6=i

(1 + cos θijk).e−(R2
ij+R

2
ik+R2

jk).fc(Rij).fc(Rik).fc(Rjk)

where cos θijk = ~Rij . ~Rik
RijRik
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For each species, there are 18 (since this is the maximum number of possible

atoms in a species in our database) 5-long vectors for each of the possible atoms of

that species - starting with 4 carbon atoms, then 10 hydrogen and 4 oxygen. The

actual ordering of the atoms inside an atom type does not matter as each set of atomic

fingerprints will be fed to separate neural networks where these nets will share the

weights. If a species does not have all the C, H or O atoms, those spaces are given

values of zero. The neural net for that (absent) atom will output zero contribution

towards the total energy.

A.2.5 Atomic Fingerprints from SMILES

For each atom, we used an 8-length vector (according to Figure 3 in the main paper)

as its atomic fingerprint based on SMILES. Since accounting for all the bonds centered

on carbon and oxygen will include all the bonds from hydrogen, we have only used

atomic fingerprints centered on carbon and oxygen atoms. Since no coordinate data

is used here, no metal surface information is included in these fingerprints. As any

species in our database contains at most four carbon and four oxygen atoms, for each

atom we have 4 + 4 = 8 sets of atomic fingerprints.

For each species, there are 8 8-long vector for each of the possible atoms of that

species - starting with 4 carbon atoms, then 4 oxygen. The sequence of values inside

each atomic fingerprint follows Figure 3.4. The ordering of atoms, and zero values

for non-existent atoms (for smaller-than-max molecules) are handled the same way

as it was for the coordinate based fingerprints.

A.3 Calculation Procedure for Interpolative Predictions

Calculation process for prediction across metals (results for which are shown in Ta-

ble 2.2) is presented in Algorithm 4.
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Algorithm 4 Calculation of Prediction Across Metals Using Only Metal Descriptors
1: for each descriptor combination do
2: for each metal do
3: For each species of the metal get the predicted energy using 7 other energies

for that species for all other metals.
4: Absolute error for each prediction stored.
5: Mean absolute error for that metal and for that descriptor combination is

saved.
6: end for
7: Mean and standard deviation of all the absolute errors is calculated for the

descriptor combination.
8: end for

Calculation process for prediction across species and metals (results for which are

shown in Table 2.3) is presented in Algorithm 5.

Algorithm 5 Calculation of Prediction Across Species and Metals
1: for each set of list (all metal-species pair for a combination) entries in the ’Inputs’

section do
2: for each ML algorithm in GP,KRR,SVR,Ridge,Lasso,Elastic do
3: for 100 times do
4: Read the numerical entries.
5: Shuffle data randomly and then split into train and test sets.
6: Use 5 fold cross-validation on training data to obtain best hyperparam-

eters for the current algorithm.
7: Generate predictions for test set using optimum hyperparameters.
8: Absolute errors for this run are saved temporarily.
9: end for

10: Mean and SD of all the absolute errors for the algorithm is calculated and
stored.

11: end for
12: Save results
13: end for

A.4 Machine Learning Models and Hyper-parameter Settings

The hyper-parameters for machine learning (ML) models such as ridge regression,

LASSO, support vector regression (SVR), kernel ridge regression (KRR), Gaussian

process (GP) were tuned using 5-fold cross validation. All of the above models except
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GP was run using the Python-based library ‘scikit-learn’. GP was run using the

library ‘GPy’.

All neural network based models were created using the ‘TensorFlow’ API. Our

proposed multi filter based model was run with the following setting: hyperbolic

tangent activation function (this worked better than the ReLU activation function),

dropout value of 0.9 (10% of the hidden units were randomly dropped), atomic sub-

network weights and filter contribution weights (W (i)s in Figure 4 of the main paper)

had regularizer with scale 0.001, atomic subnetwork weights randomly initialized with

zero mean and 0.0001 standard deviation, learning rate of 0.001, Adam optimizer,

session variables saved with tolerance value of 0.001 for improved validation cost,

atom-type contribution weights (WC and WO in Figure 4 of main text, shared across

the filters) were initialized with constant values of 1 (as their default behavior is

to just add up linearly), subnetwork structure of 5-by-8-by-1 for coordinate based

atomic fingerprints and 8-by-10-by-1 for SMILES based atomic fingerprints. To get

an ensemble of the results, the runs were performed 10 times to obtain the mean

predicted value for each species in the test set.

A.5 Results

For all of the following tables for interpolation, the results were obtained by dividing

the 4C data randomly into training (size 215) and testing (size 32) set. After running

an ML model, the mean of the absolute errors on the testing set gives one MAE. Then

the whole data is again randomly permuted and divided into training and testing set,

which gives another MAE. The process is repeated 100 times. The mean of all these

MAEs (which is also the mean of all the absolute errors across all runs) gives the

values for the column with header ‘Mean of MAEs’. The standard deviation of the

MAEs are given in the column with the header ‘SD of the MAEs’. The standard

deviation of all the absolute errors across the 100 runs is reported in the column ‘SD
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of AEs’. In case of Gaussian process (GP), there are two additional columns. As GP

provides an uncertainty measure around each prediction point, we report the mean

and standard deviation of those ‘std’s in the last two columns of the tables where GP

is used.

Table A.4: Interpolation prediction errors for Coulomb matrix (CM) and bag-of-
bonds (BoB)

Method Model Mean of
MAEs (eV)

SD of
MAEs (eV)

SD of
AEs (eV)

Mean of
Stds (eV)

SD of
Stds (eV)

CM svr 0.236 0.041 0.241 N/A N/A
CM krr 0.233 0.050 0.254 N/A N/A
CM ridge 0.327 0.040 0.272 N/A N/A
CM lasso 0.319 0.045 0.260 N/A N/A
CM elastic 0.327 0.047 0.277 N/A N/A
CM gp 0.230 0.036 0.218 0.305 0.181
BoB svr 0.210 0.038 0.214 N/A N/A
BoB krr 0.139 0.024 0.136 N/A N/A
BoB ridge 0.219 0.047 0.279 N/A N/A
BoB lasso 0.218 0.043 0.257 N/A N/A
BoB elastic 0.218 0.043 0.271 N/A N/A
BoB gp 0.222 0.051 0.306 0.099 0.124
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Table A.5: Interpolation prediction errors for ECFP (Extended Connectivity Finger-
prints) and Flat Fingerprints

Fingerprint
type Model Mean of

MAEs (eV)
SD of

MAEs (eV)
SD of

AEs (eV)
Mean of
Stds (eV)

SD of
Stds (eV)

ECFP svr 0.165 0.030 0.179 N/A N/A
ECFP krr 0.180 0.029 0.188 N/A N/A
ECFP ridge 0.183 0.031 0.184 N/A N/A
ECFP lasso 0.186 0.031 0.187 N/A N/A
ECFP elastic 0.177 0.029 0.180 N/A N/A
ECFP gp 0.183 0.037 0.185 0.014 0.002
FlatFP svr 0.148 0.021 0.129 N/A N/A
FlatFP krr 0.141 0.022 0.122 N/A N/A
FlatFP ridge 0.196 0.027 0.166 N/A N/A
FlatFP lasso 0.189 0.024 0.156 N/A N/A
FlatFP elastic 0.189 0.026 0.154 N/A N/A
FlatFP gp 0.150 0.023 0.127 0.080 0.104

Table A.6: Interpolation prediction errors for additive subnetwork with
atomic fingerprints from both coordinates and SMILES

Fingerprint
type Filter Count Mean of

MAEs (eV)
SD of

MAEs (eV)
SD of

AEs (eV)

Coordinate 1 0.347 0.027 0.259
Coordinate 2 0.335 0.022 0.244
Coordinate 4 0.309 0.024 0.231
Coordinate 6 0.301 0.022 0.221
Coordinate 8 0.299 0.024 0.215
SMILES 1 0.190 0.025 0.164
SMILES 2 0.154 0.020 0.118
SMILES 4 0.154 0.024 0.124
SMILES 6 0.142 0.025 0.120
SMILES 8 0.142 0.017 0.133

97



www.manaraa.com

Table A.7: Extrapolation prediction errors for Coulomb matrix (CM) and
bag-of-bonds (BoB)

Method Model MAEs (eV) SD of
AEs (eV)

Mean of
Stds (eV)

SD of
Stds (eV)

CM svr 2.392 1.015 N/A N/A
CM krr 2.401 1.004 N/A N/A
CM ridge 12.105 3.273 N/A N/A
CM lasso 12.105 3.273 N/A N/A
CM elastic 11.579 3.093 N/A N/A
CM gp 2.588 1.261 0.995 0.009
BoB svr 2.596 0.612 N/A N/A
BoB krr 2.046 0.422 N/A N/A
BoB ridge 4.292 0.858 N/A N/A
BoB lasso 4.292 0.858 N/A N/A
BoB elastic 4.280 0.880 N/A N/A
BoB gp 2.785 0.643 0.100 0.054

Table A.8: Extrapolation prediction errors for ECFP (Extended Connectiv-
ity Fingerprints) and Flat Fingerprints

Fingerprint
type Model MAEs (eV) SD of

AEs (eV)
Mean of
Stds (eV)

SD of
Stds (eV)

ECFP svr 2.961 0.760 N/A N/A
ECFP krr 2.872 0.760 N/A N/A
ECFP ridge 2.965 0.784 N/A N/A
ECFP lasso 2.965 0.784 N/A N/A
ECFP elastic 2.989 0.758 N/A N/A
ECFP gp 2.985 0.764 0.015 0.001
FlatFP svr 2.426 0.660 N/A N/A
FlatFP krr 2.342 0.625 N/A N/A
FlatFP ridge 2.431 0.619 N/A N/A
FlatFP lasso 2.431 0.619 N/A N/A
FlatFP elastic 2.322 0.588 N/A N/A
FlatFP gp 2.373 0.646 0.102 0.034
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Table A.9: Extrapolation prediction errors for additive subnetwork with
atomic fingerprints from both coordinates and SMILES

Fingerprint
type Filter Count Mean of

MAEs (eV)
SD of

MAEs (eV)
SD of

AEs (eV)

Coordinate 1 0.324 0.017 0.212
Coordinate 2 0.283 0.014 0.196
Coordinate 3 0.282 0.014 0.192
Coordinate 4 0.282 0.013 0.190
Coordinate 5 0.289 0.015 0.201
Coordinate 6 0.284 0.014 0.198
Coordinate 7 0.290 0.015 0.203
Coordinate 8 0.289 0.015 0.203
SMILES 1 0.434 0.097 0.314
SMILES 2 0.313 0.055 0.248
SMILES 3 0.275 0.051 0.214
SMILES 4 0.261 0.045 0.185
SMILES 5 0.227 0.015 0.143
SMILES 6 0.233 0.017 0.149
SMILES 7 0.235 0.023 0.163
SMILES 8 0.236 0.022 0.159
SMILES 9 0.236 0.023 0.164
SMILES 10 0.228 0.017 0.156
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